首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(4):502-510
Autophagy is a degradation pathway for the turnover of dysfunctional organelles or aggregated proteins in cells. Extracellular accumulation of β-amyloid peptide has been reported to be a major cause of Alzheimer's disease (AD) and large numbers of autophagic vacuoles accumulate in the brain of AD patient. However, how autophagic process is involved in Aβ-induced neurotoxicity and how Aβ peptide is transported into neuron and metabolized is still unknown. In order to study the role of autophagic process in Aβ-induced neurotoxicity, EGFP-LC3 was over-expressed in SH-SY5Y cells (SH-SY5Y/pEGFP-LC3). It was found that treatment with Aβ25-35, Aβ1-42 or serum-starvation induced strong autophagy response in SH-SY5Y/pEGFP-LC3. Confocal double-staining image showed that exogenous application of Aβ1-42 in medium caused the co-localization of Aβ1-42 with LC3 in neuronal cells. Concomitant treatment of Aβ with a selective α7nAChR antagonist, α-bungarotoxin (α-BTX), enhanced Aβ-induced neurotoxicity in SH-SY5Y cells. On the other hand, nicotine (nAChR agonist) enhanced the autophagic process and also inhibited cell death following Aβ application. In addition, nicotine but not α-BTX increased primary hippocampal neuronal survival following Aβ treatment. Furthermore, using Atg7 siRNA to inhibit autophagosome formation in an early step or α7nAChR siRNA to knockdown α7nAChR significantly enhanced Aβ-induced neurotoxicity. Confocal double-staining image shows that nicotine treatment in the presence of Aβ enhanced the co-localization of α7nAChR with autophagosomes. These results suggest that α7nAChR may act as a carrier to bind with eAβ and internalize into cytoplasm and further inhibit Aβ-induced neurotoxicity via autophagic degradation pathway. Our results suggest that autophagy process plays a neuroprotective role against Aβ-induced neurotoxicity. Defect in autophagic regulation or Aβ-α7nAChR transport system may impair the clearance of Aβ and enhance the neuronal death.  相似文献   

2.
Antibiofilm activity of several human defensin analogs that have the ability to kill planktonic bacteria, against pre-established biofilms of Escherichia coli MG1655 and Staphylococcus aureus NCTC 8530 were examined. Linear and linear fatty acylated analogs did not show any activity while disulfide constrained analogs disrupted pre-established S. aureus biofilms. Chimeric analogs of human β-defensin 1 and θ-defensin, hBTD-1 and [d]hBTD-1 were highly active against S. aureus biofilms. Among the analogs tested, only the d-enantiomer [d]hBTD-1 showed activity against E. coli biofilm. Our study provides insights into the structural requirements for the eradication of pre-established biofilms in defensin analogs.  相似文献   

3.
4.
Airway infections are known to cause exacerbations of allergy and asthma. Tonsils constitute a primary site for microbial recognition and triggering of the immune system in the airways. Human β-defensins (HBDs) are antimicrobial peptides with an important role in this defense. Our aim was to investigate HBD1-3 in tonsillar tissue and their potential role in allergic rhinitis (AR). Tonsils, obtained from patients with AR and non-allergic controls, and isolated tonsillar CD4(+), CD8(+) and CD19(+) lymphocytes were analyzed for HBD1-3 expression using real-time RT-PCR and/or immunohistochemistry. Tonsillar tissue, mixed tonsillar lymphocytes and airway epithelial cells (AECs) were cultured with or without IL-4, IL-5, IL-13 or histamine followed by measurements of HBD1-3 release using ELISA. HBD1-3 were present in tonsillar tissue, including epithelial, CD4(+), CD8(+) and CD19(+) cells. The expression was reduced in allergic compared to healthy tonsils. Stimulation of AECs with IL-4, IL-5 and histamine down-regulated the HBD release, whereas no effects were seen in cultured tonsils or lymphocytes. This study demonstrates presence of HBD1-3 in tonsils and that the levels are reduced in patients with AR. Together with the down-regulation of HBDs in epithelial cells in the presence of allergic mediators suggest that AR patients have an impaired antimicrobial defense that might make them more susceptible to respiratory tract infections.  相似文献   

5.
Human β-defensin 2 (HBD2) is a member of the defensin family of antimicrobial peptides that plays important roles in the innate and adaptive immune system of both vertebrates and invertebrates. In addition to their direct bactericidal action, defensins are also involved in chemotaxis and Toll-like receptor activation. In analogy to chemokine/glycosaminoglycan (GAG) interactions, GAG-defensin complexes are likely to play an important role in chemotaxis and in presenting defensins to their receptors. Using a gel mobility shift assay, we found that HBD2 bound to a range of GAGs including heparin/heparan sulfate (HS), dermatan sulfate (DS), and chondroitin sulfate. We used NMR spectroscopy of (15)N-labeled HBD2 to map the binding sites for two GAG model compounds, a heparin/HS pentasaccharide (fondaparinux sodium; FX) and enzymatically prepared DS hexasaccharide (DSdp6). We identified a number of basic amino acids that form a common ligand binding site, which indicated that these interactions are predominantly electrostatic. The dissociation constant of the [DSdp6-HBD2] complex was determined by NMR spectroscopy to be 5 ± 5 μM. Binding of FX could not be quantified because of slow exchange on the NMR chemical shift time scale. FX was found to induce HBD2 dimerization as evidenced by the analysis of diffusion coefficients, (15)N relaxation, and nESI-MS measurements. The formation of FX-bridged HBD2 dimers exhibited features of a cooperative binding mechanism. In contrast, the complex with DSdp6 was found to be mostly monomeric.  相似文献   

6.
 We report the construction and expression of a fusion protein between a single-chain antibody specific for human carcinomas and human β-glucuronidase by recombinant DNA technology. The sequences encoding the murine monoclonal antibody 323/A3 light- and heavy-chain variable genes were joined by a synthetic sequence encoding a 15-amino-acid linker and combined with human β-glucuronidase by a synthetic sequence encoding a 6-amino-acid linker. The construct was placed under the control of the cytomegalovirus promotor and expressed in COS-7 cells. The yield of active fusion protein was 10 ng/ml transfectoma supernatant. Antibody affinity, antibody specificity and enzyme activity were fully retained by the fusion protein. Biochemical characterization of the fusion protein by sodium dodecyl sulfate/polyacrylamide gel electrophoresis showed a molecular mass of 100 kDa under denaturing conditions. Gel-filtration analysis indicated that the enzymatically active form is a tetramer of approximately 400 kDa. The non-toxic prodrug N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate was activated to the cytotoxic drug doxorubicin by the fusion protein with a hydrolysis rate similar to that of human β-glucuronidase. The growth inhibition of tumor cells coated with the fusion protein and exposed to prodrug was similar to that obtained with doxorubicin. This study shows the feasibility of constructing eukaryotic fusion proteins consisting of a single-chain antibody and human β-glucuronidase for use in the specific activation of anticancer prodrugs. Received: 5 June 1997 / Accepted: 25 October 1997  相似文献   

7.
The amino acid composition of halophilic enzymes is characterized by an abundant content of acidic amino acid, which confers to the halophilic enzymes extensive negative charges at neutral pH and high aqueous solubility. This negative charge prevents protein aggregation when denatured and thereby leads to highly efficient protein refolding. β-Lactamase from periplasmic space of moderate halophile (BLA), a typical halophilic enzyme, can be readily expressed as a native, active form in Escherichia coli cytoplasm. Similar to other halophilic enzymes, BLA is soluble upon denaturation by heat or urea treatments and, hence, can be efficiently refolded. Such high solubility and refolding efficiency make BLA a potential fusion partner for expression of aggregation-prone heterologous proteins to be expressed in E. coli. Here, we succeeded in the soluble expression of several “difficult-to-express” proteins as a BLA fusion protein and verified biological activities of human interleukin 1α and human neutrophil α-defensin, HNP-1.  相似文献   

8.
Highlights? H. pylori is highly susceptible to the bactericidal activity of hBD3 ? hBD3 is initially induced by H. pylori via activation of EGFR/MAPK/JAK signaling ? H. pylori evades killing by downregulating hBD3 via CagA-mediated SHP-2 activation ? CagA virulence factor is a potent inhibitor of an immune effector mechanism  相似文献   

9.
Defensins are a group of small antimicrobial peptides playing an important role in innate host defense. In this study, a β-defensin cloned from liver of orange-spotted grouper, Epinephelus coioides, EcDefensin, showed a key role in inhibiting the infection and replication of two kinds of newly emerging marine fish viruses, an enveloped DNA virus of Singapore grouper iridovirus (SGIV), and a non-enveloped RNA virus of viral nervous necrosis virus (VNNV). The expression profiles of EcDefensin were significantly (P < 0.001) up-regulated after challenging with Lipopolysaccharide (LPS), SGIV and Polyriboinosinic Polyribocytidylic Acid (polyI:C) in vivo. Immunofluorescence staining observed its intracellular innate immune response to viral infection of SGIV and VNNV. EcDefensin was found to possess dual antiviral activity, inhibiting the infection and replication of SGIV and VNNV and inducting a type I interferon-related response in vitro. Synthetic peptide of EcDefensin (Ec-defensin) incubated with virus or cells before infection reduced the viral infectivity. Ec-defensin drastically decreased SGIV and VNNV titers, viral gene expression and structural protein accumulation. Grouper spleen cells over-expressing EcDefensin (GS/pcDNA-EcDefensin) support the inhibition of viral infection and the upregulation of the expression of host immune-related genes, such as antiviral protein Mx and pro-inflammatory cytokine IL-1β. EcDefensin activated type I IFN and Interferon-sensitive response element (ISRE) in vitro. Reporter genes of IFN-Luc and ISRE-Luc were significantly up-regulated in cells transfected with pcDNA-EcDefenisn after infection with SGIV and VNNV. These results suggest that EcDefensin is importantly involved in host immune responses to invasion of viral pathogens, and open the new avenues for design of antiviral agents in fisheries industry.  相似文献   

10.
The hydrophobic lung surfactant protein, SP-B, is essential for survival. Cycling of lung volume during respiration requires a surface-active lipid-protein layer at the alveolar air-water interface. SP-B may contribute to surfactant layer maintenance and renewal by facilitating contact and transfer between the surface layer and bilayer reservoirs of surfactant material. However, only small effects of SP-B on phospholipid orientational order in model systems have been reported. In this study, N-terminal (SP-B(8-25)) and C-terminal (SP-B(63-78)) helices of SP-B, either linked as Mini-B or unlinked but present in equal amounts, were incorporated into either model phospholipid mixtures or into bovine lipid extract surfactant in the form of vesicle dispersions or mechanically oriented bilayer samples. Deuterium and phosphorus nuclear magnetic resonance (NMR) were used to characterize effects of these peptides on phospholipid chain orientational order, headgroup orientation, and the response of lipid-peptide mixtures to mechanical orientation by mica plates. Only small effects on chain orientational order or headgroup orientation, in either vesicle or mechanically oriented samples, were seen. In mechanically constrained samples, however, Mini-B and its component helices did have specific effects on the propensity of lipid-peptide mixtures to form unoriented bilayer populations which do not exchange with the oriented fraction on the timescale of the NMR experiment. Modification of local bilayer orientation, even in the presence of mechanical constraint, may be relevant to the transfer of material from bilayer reservoirs to a flat surface-active layer, a process that likely requires contact facilitated by the formation of highly curved protrusions.  相似文献   

11.
Human β-defensin 2 (hBD-2) has antimicrobial activity and may play a role in airway mucosal defense, but studies have not yet examined its expression in lung tissue of patients with chronic obstructive pulmonary disease (COPD). Here we investigated hBD-2 levels in lung tissues of COPD patients and analyzed their correlations with IL-8, IL-1β, cigarette smoking and lung function in order to see whether the protein may be involved in pathogenesis of the disease. Peripheral lung tissue specimens were obtained from 51 patients who underwent lung resection for peripheral lung cancer: healthy non-smokers (n = 8), healthy current smokers (n = 7), non-smokers with COPD (n = 11), and current smokers with COPD (n = 25). RT-PCR and immunohistochemical staining were used to detect expression levels of hBD-2, IL-8 and IL-1β. Expression of hBD-2 mRNA was significantly higher in COPD patients than in healthy controls, and significantly higher in current smokers than in non-smokers (p < 0.05). Among healthy controls, hBD-2 mRNA levels were similar between current smokers and non-smokers. Immunohistochemistry showed hBD-2 protein to be expressed mainly in epithelia of distal bronchioles and its expression pattern among our patient groups mirrored that of the mRNA. IL-8 mRNA levels were significantly higher in COPD patients than in healthy controls (p < 0.05), while IL-1β mRNA levels did not differ significantly among the groups. Levels of hBD-2 mRNA positively correlated with levels of IL-8 mRNA (r = 0.545, p = 0.002), and negatively correlated with FEV1/FVC ratios and with predicted FEV1% values (r = −0.406, p = 0.011). Our results indicate that hBD-2 expression is elevated in distal airways of COPD patients and that it may be involved in pathogenesis of the disease. Our data implicate cigarette smoking as a factor that may elevate hBD-2 levels in lung tissues of COPD patients.  相似文献   

12.
Wang S  Leng XY  Yan YB 《Biochemistry》2011,50(48):10451-10461
β-Crystallins are the major structural proteins in mammalian lens, and their stability is critical in maintaining the transparency and refraction index of the lens. Among the seven β-crystallins, βA3-crystallin and βB1-crystallin, an acidic and a basic β-crystallin, respectively, can form heteromers in vivo. However, the physiological roles of the heteromer have not been fully elucidated. In this research, we studied whether the basic β-crystallin facilitates the folding of acidic β-crystallin. Equilibrium folding studies revealed that the βA3-crystallin and βB1-crystallin homomers and the βA3/βB1-crystallin heteromer all undergo similar five-state folding pathways which include one dimeric and two monomeric intermediates. βA3-Crystallin was found to be the most unstable among the three proteins, and the transition curve of βA3/βB1-crystallin was close to that of βB1-crystallin. The dimeric intermediate may be a critical determinant in the aggregation process and thus is crucial to the lifelong stability of the β-crystallins. A comparison of the Gibbs free energy of the equilibrium folding suggested that the formation of heteromer contributed to the stabilization of the dimer interface. On the other hand, βA3-crystallin, the only protein whose refolding is challenged by serious aggregation, can be protected by βB1-crystallin in a dose-dependent manner during the kinetic co-refolding. However, the protection is not observed in the presence of the pre-existed well-folded βB1-crystallin. These findings suggested that the formation of β-crystallin heteromers not only stabilizes the unstable acidic β-crystallin but also protects them against aggregation during refolding from the stress-denatured states.  相似文献   

13.
Isolation of β-globin-related genes from a human cosmid library   总被引:1,自引:0,他引:1  
A human gene library was constructed using an improved cloning technique for cosmid vectors. Human placental DNA was partially digested with restriction endonuclease Mboi, size-fractionated and ligated to BamHI-cut and phosphatase-treated cosmid vector pJB8. After packaging in λ phage particles, the recombinant DNA was transduced into Escherichia coli 1400 or HB101 followed by selection on ampicillin for recombinant E. coli. 150000 recombinant-DNA-containing colonies were screened for the presence of the human β-globin related genes. Five recombinants were isolated containing the human β-globin locus and encompassing approx. 70 kb of human DNA.  相似文献   

14.
Two neutral β-galactosidase isozymes were purified from human liver. The initial step of purification was removal of the acidic β-galactosidases by adsorption on concanavalin A-Sepharose 4B conjugate. Subsequent purification steps included ammonium sulfate precipitation, diethylaminoethyl cellulose column chromatography, Sephadex G-100 gel filtration, and preparative polyacrylamide-gel isoelectric focusing. The final step of purification was affinity chromatography of the separated isoelectric forms on ?-aminocaproyl-β-d-galactosylamine-Sepharose 4B conjugate. The purified β-galactosidase isozymes had activity toward both β-d-galactoside and β-d-glucoside derivatives of 4-methylumbelliferone and p-nitrophenol with a pH optimum around 6.2. These enzyme forms were also found to possess lactosylceramidase II activity with a pH optimum in the range of 5.4 to 5.6, but not lactosylceramidase I activity and no activity toward galactosylceramide or GM1-ganglioside. The molecular weight was found to be in the range of 37,500–39,500 for the two neutral isozymes and they had similar Km and V values; the more acidic form (designated β-galactosidase N1) was more heat stable than the other form (designated β-galactosidase N2). Antibodies evoked against the N1 and N2 β-galactosidases gave identical precipitin lines retaining enzymatic activity. No cross-reactivity was observed between the neutral and the acidic isozymes when examined with the respective antisera.  相似文献   

15.
16.
Human tissues contain at least two enzymes capable of releasing glucose from 4-methylumbelliferyl-β-d-glucopyranoside, but only one of these enzymes can hydrolyze glucocerebroside and is deficient in individuals with Gaucher's disease. In the present report, we demonstrate that, in human liver, these two β-glucosidases differ in terms of their subcellular localization, chromatographic behavior on ion-exchange columns, substrate specificity, and sensitivity to inhibition or activation by sodium taurocholate and phospholipids. We also demonstrate that when the relatively nonspecific, artificial β-glucoside substrate, 4-methylumbelliferyl-β-d-glucopyranoside, is used under assay conditions optimal for glucocerebroside hydrolysis, it is effective in measuring relative glucocerebroside:β-glucosidase activity and can be used to evaluate an individual's status with respect to Gaucher's disease. These conditions of assay require a pH near neutrality (pH 5.5–6.5) and the presence of the detergent sodium taurocholate. The inclusion of sodium taurocholate in assays using 4-methylumbelliferyl-β-d-glucopyranoside as substrate permits the specific measurement of glucocerebroside:β-glucosidase activity because sodium taurocholate inhibits the nonspecific β-glucosidase not involved in Gaucher's disease and stimulates the relevant β-glucocerebrosidase activity.  相似文献   

17.
Summary A series of man-Chinese hamster and man-mouse somatic cell hybrids was investigated to study the localization of the genes coding for the human lysosomal enzyme -galactosidase (EC 3.2.1.23) and for its protective protein. Using a monoclonal antibody, raised against human placental -galactosidase, it was observed that the structural locus for the -galactosidase polypeptide is located on chromosome 3. The nature of the involvement of chromosome 22 in the expression of human -galactosidase was elucidated by metabolic labelling of the hybrids with radioactive amino acids, immunoprecipitation with monoclonal and polyclonal antibodies against -galactosidase, followed by analysis via gel electrophoresis and fluorography.The data show that the presence of chromosome 22 coincides with the presence of a 32 kd protein. This polypeptide, the protective protein was previously shown to be intimately associated with human -galactosidase. In addition, the protective protein was found to be essential for the in vivo stability of -galactosidase by aggregating -galactosidase monomers into high molecular weight multimes. Both chromosome 3 and 22 are therefore necessary to obtain normal levels og -galactosidase activity in human cells.  相似文献   

18.
Chong  D.K.X.  Roberts  W.  Arakawa  T.  Illes  K.  Bagi  G.  Slattery  C.W.  Langridge  W.H.R. 《Transgenic research》1997,6(4):289-296
A 1177 bp cDNA fragment encoding the human milk protein -casein was introduced into Solanum tuberosum cells under control of the auxin-inducible, bidirectional mannopine synthase mas12) promoters using Agrobacterium tumefaciens-mediated leaf disc transformation methods. Antibiotic-resistant plants were regenerated and transformants selected based on luciferase activity carried by the expression vector containing the human -casein cDNA. The presence of human -casein cDNA in the plant genome was detected by PCR and DNA hybridization experiments. Human -casein mRNA was identified in leaf tissues of transgenic plants by RT-PCR analysis. Human - casein was identified in auxin-induced leaf and tuber tissues of transformed potato plants by immunoprecipitation and immunoblot analysis. Human -casein produced in transgenic plants migrated in polyacrylamide gels as a single band with an approximate molecular mass of 30 kDa. Immunoblot experiments identified approximately 0.01% of the total soluble protein of transgenic potato leaf tissue as -casein. The above experiments demonstrate the expression of human milk - casein as part of an edible food plant. These findings open the way for reconstitution of human milk inedible plants for replacement of bovine milk in baby foods for general improvement of infant nutrition, and for prevention of gastric and intestinal diseases in children  相似文献   

19.
Farnesoid X receptor (FXR) is highly expressed in liver and intestine where it controls bile acid (BA), lipid and glucose homeostasis. Here we show that FXR is expressed and functional, as assessed by target gene expression analysis, in human islets and β-cell lines. FXR is predominantly cytosolic-localized in the islets of lean mice, but nuclear in obese mice. Compared to FXR+/+ mice, FXR−/− mice display a normal architecture and β-cell mass but the expression of certain islet-specific genes is altered. Moreover, glucose-stimulated insulin secretion (GSIS) is impaired in the islets of FXR−/− mice. Finally, FXR activation protects human islets from lipotoxicity and ameliorates their secretory index.  相似文献   

20.
Radiotherapy is one of the effective therapies used for treating various malignant tumors. However, the emergence of tolerant cells after irradiation remains problematic due to their high metastatic ability, sometimes indicative of poor prognosis. In this study, we showed that subcloned human lung adenocarcinoma cells (A549P-3) that are irradiation-tolerant indicate high invasive activity in vitro, and exhibit an integrin β1 activity-dependent migratory pattern. In collagen gel overlay assay, majority of the A549P-3 cells displayed round morphology and low migration activity, whereas a considerable number of A549P-3IR cells surviving irradiation displayed a spindle morphology and high migration rate. Blocking integrin β1 activity reduced the migration rate of A549P-3IR cells and altered the cell morphology allowing them to assume a round shape. These results suggest that the A549P-3 cells surviving irradiation acquire a highly invasive integrin β1-dependent phenotype, and integrin β1 might be a potentially effective therapeutic target in combination with radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号