首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-glucanase Cel12A from Stachybotrys atra has been cloned and expressed in Aspergillus niger. The purified enzyme showed high activity of β-1,3-1,4-mixed glucans, was also active on carboxymethylcellulose (CMC), while it did not hydrolyze crystalline cellulose or β-1,3 glucans as laminarin. Cel12A showed a marked substrate preference for β-1,3-1,4 glucans, showing maximum activity on barley β-glucans (27.69 U mg(-1)) while the activity on CMC was much lower (0.51 U mg(-1)). Analysis by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focussing (IEF), and zymography showed the recombinant enzyme has apparent molecular weight of 24 kDa and a pI of 8.2. Optimal temperature and pH for enzyme activity were 50°C and pH 6.5. Thin layer chromatography analysis showed that major hydrolysis products from barley β-glucan and lichean were 3-O-β-cellotriosyl-D-glucose and 3-O-β-cellobiosyl-D-glucose, while glucose and cellobiose were released in smaller amounts. The amino acid sequence deduced from cel12A revealed that it is a single domain enzyme belonging to the GH12 family, a family that contains several endoglucanases with substrate preference for β-1,3-1,4 glucans. We believe that S. atra Cel12A should be considered as a lichenase-like or nontypical endoglucanase.  相似文献   

2.
Isolation and properties of beta-glucosidase from Ruminococcus albus   总被引:10,自引:5,他引:5       下载免费PDF全文
An enzyme active against p-nitrophenyl-beta-D-glucoside was purified from logarithmic-phase cells of Ruminococcus albus cultivated in a medium containing ball-milled cellulose. The purification yielded homogeneous enzyme after an approximately 520-fold increase in specific activity and a 9% yield. The enzyme was identified as a beta-glucosidase because it can hydrolyze cellobiose and cellooligosaccharides to glucose from the nonreducing ends.  相似文献   

3.
Two genes encoding endoglucanase, designated as egl2 and egl3, were cloned from a lignocellulosic decomposing fungus Aspergillus fumigatus Z5 and were successfully expressed in Pichia pastoris X33. The deduced amino acid sequences encoded by egl2 and egl3 showed strong similarity with the sequence of glycoside hydrolase family 5. SDS-PAGE and western blot assays indicated that the recombinant enzymes were secreted into the culture medium and the zymogram analysis confirmed that both recombinant enzymes had endoglucanase activity. Several biochemical properties of the two recombinant enzymes were studied: Egl2 and Egl3 showed optimal activity at pH 5.0 and 4.0, respectively, and at 50 and 60°C, respectively. Egl2 and Egl3 showed good pH stability in the range of 4-7, and both enzymes demonstrated good thermostability ranging from 30 to 60°C. The K(m) and V(max) values using carboxymethyl cellulose (CMC, soluble cellulose, polymerized by β-1, 4-linked glucose residues) as the substrate at optimal conditions were determined. The activities of the enzymes on a variety of cello-oligosaccharide substrates were investigated, and Egl2 can hydrolyze cellotetraose and cellopentaose but not cellobiose and cellotriose, whereas Egl3 can hydrolyze all cello-oligosaccharides, except cellobiose.  相似文献   

4.
5.
β-Glucosidase plays an important role in the degradation of cellulose. In this study, a novel β-glucosidase ccbgl1b gene for a glycosyl hydrolase (GH) family 1 enzyme was cloned from the genome of Cellulosimicrobium cellulans and expressed in Escherichia coli BL21 cells. The sequence contained an open reading frame of 1494?bp, encoded a polypeptide of 497?amino acid residues. The recombinant protein CcBgl1B was purified by Ni sepharose fastflow affinity chromatography and had a molecular weight of 57?kDa, as judged by SDS-PAGE. The optimum β-glucosidase activity was observed at 55?°C and pH 6.0. Recombinant CcBgl1B was found to be most active against aryl-glycosides p-nitrophenyl-β-D-glucopyranoside (pNPβGlc), followed by p-nitrophenyl-β-D-galactopyranoside (pNPβGal). Using disaccharides as substrates, the enzyme efficiently cleaved β-linked glucosyl-disaccharides, including sophorose (β-1,2-), laminaribiose (β-1,3-) and cellobiose (β-1,4-). In addition, a range of cello-oligosaccharides including cellotriose, cellotetraose and cellopentaose were hydrolysed by CcBgl1B to produce glucose. The interaction mode between the enzyme and the substrates driving the reaction was modelled using a molecular docking approach. Understanding how the GH1 enzyme CcBgl1B from C. cellulans works, particularly its activity against cello-oligosaccharides, would be potentially useful for biotechnological applications of cellulose degradation.  相似文献   

6.
A rational four-step strategy to identify novel bacterial glycosyl hydrolases (GH), in combination with various fungal enzymes, was applied in order to develop tailored enzyme cocktails to efficiently hydrolyze pretreated lignocellulosic biomass. The fungal cellulases include cellobiohydrolase I (CBH I; GH family 7A), cellobiohydrolase II (CBH II; GH family 6A), endoglucanase I (EG I; GH family 7B), and β-glucosidase (βG; GH family 3). Bacterial endocellulases (LC1 and LC2; GH family 5), β-glucosidase (LβG; GH family 1), endoxylanases (LX1 and LX2; GH family 10), and β-xylosidase (LβX; GH family 52) from multiple sources were cloned, expressed, and purified. Enzymatic hydrolysis for varying enzyme combinations was carried out on ammonia fiber expansion (AFEX)-treated corn stover at three total protein loadings (i.e., 33, 16.5, and 11 mg enzyme/g glucan). The optimal mass ratio of enzymes necessary to maximize both glucan and xylan yields was determined using a suitable design of experiments. The optimal hybrid enzyme mixtures contained fungal cellulases (78% of total protein loading), which included CBH I (loading ranging between 9-51% of total enzyme), CBH II (9-51%), EG I (10-50%), and bacterial hemicellulases (22% of total protein loading) comprising of LX1 (13%) and LβX (9%). The hybrid mixture was effective at 50°C, pH 4.5 to maximize saccharification of AFEX-treated corn stover resulting in 95% glucan and 65% xylan conversion. This strategy of screening novel enzyme mixtures on pretreated lignocellulose would ultimately lead to the development of tailored enzyme cocktails that can hydrolyze plant cell walls efficiently and economically to produce cellulosic ethanol.  相似文献   

7.
The Gram-positive bacterium Cellulomonas fimi produces a large array of carbohydrate-active enzymes. Analysis of the collection of carbohydrate-active enzymes from the recent genome sequence of C. fimi ATCC 484 shows a large number of uncharacterized genes for glycoside hydrolase (GH) enzymes potentially involved in biomass utilization. To investigate the enzymatic activity of potential β-glucosidases in C. fimi, genes encoding several GH3 enzymes and one GH1 enzyme were cloned and recombinant proteins were expressed in Escherichia coli. Biochemical analysis of these proteins revealed that the enzymes exhibited different substrate specificities for para-nitrophenol-linked substrates (pNP), disaccharides, and oligosaccharides. Celf_2726 encoded a bifunctional enzyme with β-d-xylopyranosidase and α-l-arabinofuranosidase activities, based on pNP-linked substrates (CfXyl3A). Celf_0140 encoded a β-d-glucosidase with activity on β-1,3- and β-1,6-linked glucosyl disaccharides as well as pNP-β-Glc (CfBgl3A). Celf_0468 encoded a β-d-glucosidase with hydrolysis of pNP-β-Glc and hydrolysis/transglycosylation activities only on β-1,6-linked glucosyl disaccharide (CfBgl3B). Celf_3372 encoded a GH3 family member with broad aryl-β-d-glycosidase substrate specificity. Celf_2783 encoded the GH1 family member (CfBgl1), which was found to hydrolyze pNP-β-Glc/Fuc/Gal, as well as cellotetraose and cellopentaose. CfBgl1 also had good activity on β-1,2- and β-1,3-linked disaccharides but had only very weak activity on β-1,4/6-linked glucose.  相似文献   

8.
Bacillus circulans IAM1165 produces isoforms of β-1,3-glucan-hydrolases. Of these enzymes, the 42-kDa enzyme BglM degrades Aspergillus oryzae cell walls the most actively. A gene coding for a BglM precursor consisting of 411 amino acid residues was cloned. The 27 N-terminal amino acid sequence of the precursor is a signal peptide. The 141 C-terminal amino acid sequence showed a motif of carbohydrate-binding module family 13. This domain bound to pachyman, lichenan, and A. oryzae cell walls. The central domain showed a bacterial β-1,3-glucan-hydrolase motif belonging to glycosyl hydrolase family 16. By removal of the C-terminal domain in the IAM1165 culture, mature BglM was processed to several 27-kDa fragments that hydrolyze a soluble β-1,3-glucan.  相似文献   

9.
The production of sugars by enzymatic hydrolysis of cellulose is a multistep process which includes conversion of the intermediate cellobiose to glucose by β-glucosidase. Aside from its role as an intermediate, cellobiose inhibits the endoglucanase components of typical cellulase enzyme systems. Because these enzyme systems often contain insufficient concentrations of β-glucosidase to prevent accumulation of inhibitory cellobiose, this research investigated the use of supplemental immobilized β-glucosidase to increase yield of glucose. Immobilized β-glucosidase from Aspergillus phoenicis was produced by sorption at controlled-pore alumina with about 90% activity retention. The product lost only about 10% of the original activity during an on-stream reaction period of 500 hr with cellobiose as substrate; maximum activity occurred near pH 3.5 and the apparent activation energy was about 11 kcal/mol. The immobilized β-glucosidase was used together with Trichoderma reesei cellulase to hydrolyze cellulosic materials, such as Solka Floc, corn stove and exploded wood. Increased yields of glucose and greater conversions of cellobiose of glucose were observed when the reaction systems contained supplemental immobilized β-glucosidase.  相似文献   

10.
Proteins belonging to the glycoside hydrolase family 63 (GH63) are found in bacteria, archaea, and eukaryotes. Eukaryotic GH63 proteins are processing α-glucosidase I enzymes that hydrolyze an oligosaccharide precursor of eukaryotic N-linked glycoproteins. In contrast, the functions of the bacterial and archaeal GH63 proteins are unclear. Here we determined the crystal structure of a bacterial GH63 enzyme, Escherichia coli K12 YgjK, at 1.78 Å resolution and investigated some properties of the enzyme. YgjK consists of the N-domain and the A-domain, joined by a linker region. The N-domain is composed of 18 antiparallel β-strands and is classified as a super-β-sandwich. The A-domain contains 16 α-helices, 12 of which form an (α/α)6-barrel; the remaining 4 α-helices are found in an extra structural unit that we designated as the A′-region. YgjK, a member of the glycoside hydrolase clan GH-G, shares structural similarity with glucoamylase (GH15) and chitobiose phosphorylase (GH65), both of which belong to clan GH-L. In crystal structures of YgjK in complex with glucose, mannose, and galactose, all of the glucose, mannose, and galactose units were located in the catalytic cleft. YgjK showed the highest activity for the α-1,3-glucosidic linkage of nigerose, but also hydrolyzed trehalose, kojibiose, and maltooligosaccharides from maltose to maltoheptaose, although the activities were low. These findings suggest that YgjK is a glucosidase with relaxed specificity for sugars.  相似文献   

11.
The enzymatic lignocellulosic biomass conversion into value-added products requires the use of enzyme-rich cocktails, including β-glucosidases that hydrolyze cellobiose and cellooligosaccharides to glucose. During hydrolysis occurs accumulation of monomers causing inhibition of some enzymes; thus, glucose/xylose tolerant β-glucosidases could overcome this drawback. The search of new tolerant enzymes showing additional properties, such as high activity, wide-pH range, and thermal stability is very relevant to improve the bioprocess. We describe a novel β-glucosidase GH1 from the thermophilic Anoxybacillus thermarum (BgAt), which stood out by the robustness combination of great glucose/xylose tolerance, thermal stability, and high Vmax. The recombinant his-tagged-BgAt was overexpressed in Escherichia coli, was purified in one step, showed a high glucose/xylose tolerance, and activity stimulation (presence of 0.4 M glucose/1.0 M xylose). The optimal activity was at 65 °C - pH 7.0. BgAt presented an extraordinary temperature stability (48 h – 50 °C), and pH stability (5.5–8.0). The novel enzyme showed outstanding Vmax values compared to other β-glucosidases. Using p-nitrophenyl-β-d-glucopyranoside as substrate the values were Vmax (7614 U/mg), and KM (0.360 mM). These values suffer a displacement in Vmax to 14,026 U/mg (glucose), 14,886 U/mg (xylose), and KM 0.877 mM (glucose), and 1.410 mM (xylose).  相似文献   

12.
Family 70 glycoside hydrolase glucansucrase enzymes exclusively occur in lactic acid bacteria and synthesize a wide range of α-d-glucan (abbreviated as α-glucan) oligo- and polysaccharides. Of the 47 characterized GH70 enzymes, 46 use sucrose as glucose donor. A single GH70 enzyme was recently found to be inactive with sucrose and to utilize maltooligosaccharides [(1→4)-α-d-glucooligosaccharides] as glucose donor substrates for α-glucan synthesis, acting as a 4,6-α-glucanotransferase (4,6-αGT) enzyme. Here, we report the characterization of two further GH70 4,6-αGT enzymes, i.e., from Lactobacillus reuteri strains DSM 20016 and ML1, which use maltooligosaccharides as glucose donor. Both enzymes cleave α1→4 glycosidic linkages and add the released glucose moieties one by one to the non-reducing end of growing linear α-glucan chains via α1→6 glycosidic linkages (α1→4 to α1→6 transfer activity). In this way, they convert pure maltooligosaccharide substrates into linear α-glucan product mixtures with about 50% α1→6 glycosidic bonds (isomalto/maltooligosaccharides). These new α-glucan products may provide an exciting type of carbohydrate for the food industry. The results show that 4,6-αGTs occur more widespread in family GH70 and can be considered as a GH70 subfamily. Sequence analysis allowed identification of amino acid residues in acceptor substrate binding subsites +1 and +2, differing between GH70 GTF and 4,6-αGT enzymes.  相似文献   

13.
In general, cellulases and hemicellulases are modular enzymes in which the catalytic domain is appended to one or more noncatalytic carbohydrate binding modules (CBMs). CBMs, by concentrating the parental enzyme at their target polysaccharide, increase the capacity of the catalytic module to bind the substrate, leading to a potentiation in catalysis. Clostridium thermocellum hypothetical protein Cthe_0821, defined here as C. thermocellum Man5A, is a modular protein comprising an N-terminal signal peptide, a family 5 glycoside hydrolase (GH5) catalytic module, a family 32 CBM (CBM32), and a C-terminal type I dockerin module. Recent proteomic studies revealed that Cthe_0821 is one of the major cellulosomal enzymes when C. thermocellum is cultured on cellulose. Here we show that the GH5 catalytic module of Cthe_0821 displays endomannanase activity. C. thermocellum Man5A hydrolyzes soluble konjac glucomannan, soluble carob galactomannan, and insoluble ivory nut mannan but does not attack the highly galactosylated mannan from guar gum, suggesting that the enzyme prefers unsubstituted β-1,4-mannoside linkages. The CBM32 of C. thermocellum Man5A displays a preference for the nonreducing ends of mannooligosaccharides, although the protein module exhibits measurable affinity for the termini of β-1,4-linked glucooligosaccharides such as cellobiose. CBM32 potentiates the activity of C. thermocellum Man5A against insoluble mannans but has no significant effect on the capacity of the enzyme to hydrolyze soluble galactomannans and glucomannans. The product profile of C. thermocellum Man5A is affected by the presence of CBM32.  相似文献   

14.

SUMMARY

Biomass is constructed of dense recalcitrant polymeric materials: proteins, lignin, and holocellulose, a fraction constituting fibrous cellulose wrapped in hemicellulose-pectin. Bacteria and fungi are abundant in soil and forest floors, actively recycling biomass mainly by extracting sugars from holocellulose degradation. Here we review the genome-wide contents of seven Aspergillus species and unravel hundreds of gene models encoding holocellulose-degrading enzymes. Numerous apparent gene duplications followed functional evolution, grouping similar genes into smaller coherent functional families according to specialized structural features, domain organization, biochemical activity, and genus genome distribution. Aspergilli contain about 37 cellulase gene models, clustered in two mechanistic categories: 27 hydrolyze and 10 oxidize glycosidic bonds. Within the oxidative enzymes, we found two cellobiose dehydrogenases that produce oxygen radicals utilized by eight lytic polysaccharide monooxygenases that oxidize glycosidic linkages, breaking crystalline cellulose chains and making them accessible to hydrolytic enzymes. Among the hydrolases, six cellobiohydrolases with a tunnel-like structural fold embrace single crystalline cellulose chains and cooperate at nonreducing or reducing end termini, splitting off cellobiose. Five endoglucanases group into four structural families and interact randomly and internally with cellulose through an open cleft catalytic domain, and finally, seven extracellular β-glucosidases cleave cellobiose and related oligomers into glucose. Aspergilli contain, on average, 30 hemicellulase and 7 accessory gene models, distributed among 9 distinct functional categories: the backbone-attacking enzymes xylanase, mannosidase, arabinase, and xyloglucanase, the short-side-chain-removing enzymes xylan α-1,2-glucuronidase, arabinofuranosidase, and xylosidase, and the accessory enzymes acetyl xylan and feruloyl esterases.  相似文献   

15.
The hyperthermophilic endoglucanase Cel5A from Thermotoga maritima can find applications in lignocellulosic biofuel production, because it catalyzes the hydrolysis of glucan- and mannan-based polysaccharides. Here, we report the crystal structures in apo-form and in complex with three ligands, cellotetraose, cellobiose and mannotriose, at 1.29? to 2.40? resolution. The open carbohydrate-binding cavity which can accommodate oligosaccharide substrates with extensively branched chains explained the dual specificity of the enzyme. Combining our structural information and the previous kinetic data, it is suggested that this enzyme prefers β-glucosyl and β-mannosyl moieties at the reducing end and uses two conserved catalytic residues, E253 (nucleophile) and E136 (general acid/base), to hydrolyze the glycosidic bonds. Moreover, our results also suggest that the wide spectrum of Tm_Cel5A substrates might be due to the lack of steric hindrance around the C2-hydroxyl group of the glucose or mannose unit from active-site residues.  相似文献   

16.
Glycoside hydrolase family 57 glycogen branching enzymes (GH57GBE) catalyze the formation of an α-1,6 glycosidic bond between α-1,4 linked glucooliogosaccharides. As an atypical family, a limited number of GH57GBEs have been biochemically characterized so far. This study aimed at acquiring a better understanding of the GH57GBE family by a systematic sequence-based bioinformatics analysis of almost 2500 gene sequences and determining the branching activity of several native and mutant GH57GBEs. A correlation was found in a very low or even no branching activity with the absence of a flexible loop, a tyrosine at the loop tip, and two β-strands.  相似文献   

17.
18.
Cellobiose 2-epimerase (EC 5.1.3.11) was first identified in 1967 as an extracellular enzyme that catalyzes the reversible epimerization between cellobiose and 4-O-beta-D-glucopyranosyl-D-mannose in a culture broth of Ruminococcus albus 7 (ATCC 27210(T)). Here, for the first time, we describe the purification of cellobiose 2-epimerase from R. albus NE1. The enzyme was found to 2-epimerize the reducing terminal glucose moieties of cellotriose and cellotetraose in addition to cellobiose. The gene encoding cellobiose 2-epimerase comprises 1170 bp (389 amino acids) and is present as a single copy in the genome. The deduced amino acid sequence of the mature enzyme contains the possible catalytic residues Arg52, His243, Glu246, and His374. Sequence analysis shows the gene shares a very low level of homology with N-acetyl-D-glucosamine 2-epimerases (EC 5.1.3.8), but no significant homology to any other epimerases reported to date.  相似文献   

19.
Members of glycoside hydrolase family 1 (GH1) hydrolyze various glycosides and are widely distributed in organisms. With the aim of producing thermostable GH1 catalysts with potential applications in biotechnology, three GH1 members encoded by the thermophile Geobacillus kaustophilus HTA426 (GK1856, GK2337, and GK3214) were characterized using 24 p-nitrophenyl glycosides as substrates. GK1856 and GK3214 exhibited 6-phospho-β-glycosidase activity, while GK2337 did not. GK3214 was extremely thermostable and retained most of its activity during 7 days of incubation at 60 °C. GK3214 was found to have transglycosylation activity, a dimeric structure, and a possible motif that governed its substrate specificity. Substitution of the GK3214 motif with that of a β-glucosidase resulted in the unexpected generation of a thermostable, highly specific β-fucosidase, concomitant with large increases in β-glucosidase, β-cellobiosidase, α-arabinofuranosidase, β-mannosidase, β-glucuronidase, β-xylopyranosidase, and β-fucosidase activities and a dramatic decline in 6-phospho-β-glycosidase activity. This is the first report to identify a gene encoding thermostable 6-phospho-β-glycosidase and to generate a thermostable β-fucosidase. These results provided thermostable enzyme catalysts and also suggested a promising approach to develop novel GH1 biocatalysts.  相似文献   

20.
Qing Q  Wyman CE 《Bioresource technology》2011,102(2):1359-1366
Commercial cellulase complexes produced by cellulolytic fungi contain enzyme activities that are capable of hydrolyzing non-cellulosic polysaccharides in biomass, primarily hemicellulose and pectins, in addition to cellulose. However, xylanase activities detected in most commercial enzyme preparations have been shown to be insufficient to completely hydrolyze xylan, resulting in high xylooligomer concentrations remaining in the hydrolysis broth. Our recent research showed that these xylooligomers are stronger inhibitors of cellulase activity than others have previously established for glucose and cellobiose, making their removal of great importance. In this study, a HPLC system that can measure xylooligomers with degrees of polymerization (DP) up to 30 was applied to assess how Spezyme CP cellulase, Novozyme 188 β-glucosidase, Multifect xylanase, and non-commercial β-xylosidase enzymes hydrolyze different chain length xylooligomers derived from birchwood xylan. Spezyme CP cellulase and Multifect xylanase partially hydrolyzed high DP xylooligomers to lower DP species and monomeric xylose, while β-xylosidase showed the strongest ability to degrade both high and low DP xylooligomers. However, about 10-30% of the higher DP xylooligomers were difficult to be breakdown by cellulase or xylanase and about 5% of low DP xylooligomers (mainly xylobiose) proved resistant to hydrolysis by cellulase or β-glucosidase, possibly due to low β-xylosidase activity in these enzymes and/or the precipitation of high DP xylooligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号