首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Several studies have reported that amorphous nano-silica particles (nano-SPs) modulate calcium flux, although the mechanism remains incompletely understood. We thus analyzed the relationship between calcium flux and particle surface properties and determined the calcium flux route. Treatment of Balb/c 3T3 fibroblasts with nano-SPs with a diameter of 70 nm (nSP70) increased cytosolic calcium concentration, but that with SPs with a diameter of 300 or 1000 nm did not. Surface modification of nSP70 with a carboxy group also did not modulate calcium flux. Pretreatment with a general calcium entry blocker almost completely suppressed calcium flux by nSP70. Preconditioning by emptying the endoplasmic reticulum (ER) calcium stores slightly suppressed calcium flux by nSP70. These results indicate that nSP70 mainly modulates calcium flux across plasma membrane calcium channels, with subsequent activation of the ER calcium pump, and that the potential of calcium flux by nano-SPs is determined by the particle surface charge.  相似文献   

2.
Kinetics, biodistribution, and histological studies were performed to evaluate the particle‐size effects on the distribution of 15 nm and 50 nm PEG‐coated colloidal gold (CG) particles and 160 nm silica/gold nanoshells (NSs) in rats and rabbits. The above nanoparticles (NPs) were used as a model because of their importance for current biomedical applications such as photothermal therapy, optical coherence tomography, and resonance‐scattering imaging. The dynamics of NPs circulation in vivo was evaluated after intravenous administration of 15 nm CG NPs to rabbit, and the maximal concentrations of gold were observed 15–30 min after injection. Rats were injected in the tail vein with PEG‐coated NPs (about 0.3 mg Au/kg rats). 24 h after injection, the accumulation of gold in different organs and blood was determined by atomic absorption spectroscopy. In accordance with the published reports, we observed 15 nm particles in all organs with rather smooth distribution over liver, spleen and blood. By contrast, the larger NSs were accumulated mainly in the liver and spleen. For rabbits, the biodistribution was similar (72 h after intravenous injection). We report also preliminary data on the light microscopy and TEM histological examination that allows evaluation of the changes in biotissues after gold NPs treatment. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A ferric hydroxide-polyvinyl sulfate colloidal solution (Fe-PVS), prepared by mixing potassium polyvinyl sulfate (PVSK) and ferric hydroxide colloidal solution was used to study ferritin synthesis in rat peritoneal macrophages. The colloidal particles had spherical electron opaque ferric hydroxide cores with diameters of about 250 nm surrounded by radially arranged fibrous PVS molecules. They also had strong negative electric charges. Fe-PVS particles injected into the peritoneal cavity were taken up by the macrophages then disintegrated rapidly. In the phagolysosomes the electron opaque ferric hydroxide cores of Fe-PVS were denuded of their PVS frames then decomposed into small 5-6 nm granules 24 to 48 h after injection. These small granules were released from the lysosomes into the hyaloplasm and the myelin figures were found in the lysosomal vacuoles. No reaccumulation of granules in lysosomes was found even 3 months later. The intracellular distribution of ferritin in macrophages demonstrated by the immunocytochemical method showed a pattern similar to that of the small granules formed by the disintegration of Fe-PVS. This means that in rat peritoneal macrophages that contain ingested Fe-PVS particles ferritin first is synthesized in phagolysosomes by the ferric hydroxide cores that conjugate with apoferritin or protein subunits then they are dispersed into the cytoplasm. Two possible pathways for the biosynthesis of ferritin are discussed.  相似文献   

4.
Physico-chemical characterization of Intralipid emulsions.   总被引:1,自引:0,他引:1  
Fat emulsions containing soy triacylglycerols (100-300 g/l) and egg-yolk phospholipids (12 g/l) are often used for intravenous feeding. Previous studies have shown that these emulsions contain chylomicron-like emulsion particles of diameters of 300-400 nm and excess phospholipids aggregated as vesicles (liposomes), which remain in the infranatant upon floatation of the emulsion particles by ultracentrifugation. This work is devoted to the characterization of the commercial lipid emulsions commonly denoted Intralipids, with special emphasis on the presently ill-defined liposomes. The lipid particles composing commercial lipid emulsions (10%, 20% and 30% Intralipids, Kabivitrum Nutrition) were characterized by the combined use of physical and chemical methods. Each of the emulsions was fractionated by ultracentrifugation in saline into a 'cream' layer which floats to the top of the dispersion upon ultracentrifugation and a relatively transparent infranatant. The cream layer contains large emulsion particles of diameters ranging from 300 to 400 nm, in agreement with theoretical considerations based on their chemical composition as determined by chemical analysis. The infranatants contain about 1 g/l triacylglycerols in addition to phospholipids (from 7.2 g/l in 10% Intralipid to 2.4 g/l in 30% Intralipid) in the form of smaller particles of 70-100 nm diameter. Cryo-transmission electron microscopy shows that the infranatants contain vesicles (mostly unilamellar) at the side of residual small emulsion particles. This conclusion is also consistent with the distribution of phospholipids between outer and inner lamellae, as determined by 31P-NMR.  相似文献   

5.
为探讨不同转染试剂(LipofectamineTM LTXPLUSTM、Lipofectamine2000和纳米化聚酰胺-胺型树枝状聚合物(PAMAM-D))和睾丸注射方法 (睾丸网注射、曲精细管注射和间质注射)对转基因小鼠生产效率的影响,将pEGFP-C1质粒分别与不同转染试剂混合后,按照不同的注射方法注入小鼠睾丸内,30 d后检测小鼠精子密度、活力、精子阳性率以及配种后仔鼠转基因阳性率。结果 3种转染试剂对小鼠繁殖性能影响由小到大依次为LipofectamineTM LTXPLUSTM、Lipofectamine 2000和PAMAM-D。转染后LipofectamineTM LTXPLUSTM、Lipofectamine 2000和PAMAM-D组精子的GFP阳性率分别为35.65%±0.69%、12.86%±0.35%和10.04%±0.20%。配种后仔鼠的PCR阳性率分别为29.17%、13.70%和5.88%。3种不同注射方法对小鼠睾丸都造成损伤,由小到大依次为睾丸网注射、曲精细管注射和睾丸间质注射,三者的阳性精子比例分别为35.13%±1.727%、15.13%±1.457%和0%,配种后仔鼠的PCR阳性率分别为33.3%、12.5%和0%。结果表明,LipofectamineTM LTXPLUSTM和睾丸网注射对小鼠睾丸的损伤最小,并能获得较高的转染效率。  相似文献   

6.
In the last 3 years, several studies have shown that xenogeneic transplantation of rodent spermatogonia is feasible. The treatment of infertile patients with spermatogenic arrest using the injection of immature germ cells has yielded only poor results. We attempted to establish a complete spermatogenetic line in the testes of mutant aspermatogenic (W/Wv) and severe combined immunodeficient mice (SCID) transplanted with germ cells from azoospermic men. Spermatogenic cells were obtained from testicular biopsy specimens of men (average age of 34.3 +/- 9 years) undergoing infertility treatment because of obstructive and non-obstructive azoospermia. Testicular tissue was digested with collagenase to promote separation of individual spermatogenic cells. The germ cells were injected into mouse testicular seminiferous tubules using a microneedle (40 microm inner diameter) on a 10 ml syringe. To assess the penetration of the cell suspension into the tubules, trypan blue was used as an indicator. Mice were maintained for 50 to 150 days to allow time for germ cell colonisation and development prior to them being killed. Testes were then fixed for histological examination and approximately 100 cross-sectioned tubules were examined for human spermatogenic cells. A total of 26 testicular cell samples, 16 frozen and 10 fresh, were obtained from 24 men. The origin of the azoospermia was obstructive (OA) in 16 patients and non-obstructive (NOA) in 8 patients. The concentration of spermatogenic cells in the OA group was 6.6 x 10(6) cells/ml, and 1.3 x 10(6) cells/ml in the NOA group (p < 0.01). The different spermatogenic cell types were distributed equally in the OA samples, ranging from spermatogenia to fully developed spermatozoa, but in the NOA group the majority of cells were spermatogonia and spermatocytes. A total of 23 testes from 14 W/Wv mice and 24 testes from 12 SCID mice were injected successfully, as judged by the presence of spermatogenic cells in histological sections of testes removed immediately after the injection. However, sections from the remaining testes examined up to 150 days after injection showed tubules lined with Sertoli cells and xenogeneic germ cells were not found. The reason why the two strains of mouse used as recipients did not allow the implantation of human germ cells is probably due to interspecies specificity involving non-compatible cell adhesion molecules and/or immunological rejection.  相似文献   

7.
Cytoplasts from single spermatocytes of NZB/BinJ mice were separated from the nuclei and individually microinjected into B6D2F1 (C57BL/6 x DNBA/2J) hybrid embryos at the pronuclear stage (20 h after hCG injection). Of 363 zygotes injected, 311 (86%) survived and developed. From these experiments, we transferred 222 embryos into 20 pseudopregnant recipients. Eighteen (90%) became pregnant and 82 pups were born (37% of transfers). Mitochondrial DNA (mt DNA) from the NZB/BinJ strain lacks a RsaI restriction site and can thus be distinguished from the host embryo following PCR amplification. We were unable to detect the transferred mtDNA in blastocysts on day 4-5 after injection. Nor could we detect NZB/BinJ mtDNA in placentae, nor in tissues from mice born to host mothers following the transfer of blastocysts that developed from injected zygotes. Rejection of paternal mitochondria by the embryo normally occurs at the 4- to 8-cell stage in mice and is apparently dependent on mutual recognition between the mitochondria and the nuclear genome. We conclude that this mechanism has probably already developed by the time the germ cells have become committed to meiosis.  相似文献   

8.
Advances in assisted reproduction techniques such as in vitro fertilization and intracytoplasmic sperm injection have made paternity possible for many patients with male infertility. However, at least some sperm or spermatids are required for these techniques to be successful, and patients incapable of producing spermatids cannot be helped. Male mice homozygous for the mutant juvenile spermatogonial depletion (jsd) gene show spermatogonial arrest and an elevated intratesticular testosterone level like many other experimental infertility models such as those with iradiation- or chemotherapy-induced testicular damage. In this category of infertile males, suppression of the testosterone level induces spermatogonial differentiation to the stage of spermatocytes but no further. In the present study with jsd mutant mice, we induced spermatogenesis first to spermatocytes and then to elongated spermatids by suppression of testosterone levels with a GnRH antagonist, Nal-Glu, at a dose of 2500 microg kg(-1) day(-1) for 4 wk and then withdrawal of Nal-Glu. Spermatids were seen in the cross-sections of seminiferous tubules in all mice treated by administration and subsequent withdrawal of Nal-Glu. Four weeks after withdrawal of Nal-Glu, some of the germ cells differentiated into elongated spermatids. Supplementation with testosterone and Nal-Glu after 4 wk of treatment with Nal-Glu alone also induced spermatogenesis similar to the induction by withdrawal of Nal-Glu. Thus, we ascribe the restoration of the differentiation of spermatocytes to spermatids to reelevation of the testosterone level. Furthermore, we successfully rescued male sterility in jsd mice by subsequent intracytoplasmic sperm injection using the elongated spermatids induced by the programmed hormone therapy.  相似文献   

9.
The presence and biosynthesis of the testis-specific isozyme of lactate dehydrogenase (LDH-X) in cells at various stages of spermatogenesis have been examined. Enrichment of testicular cells in various stages of spermatogenesis has been achieved by two methods: (1) cell separation by velocity sedimentation in the Elutriator rotor and (2) γ irradiation of testes to eliminate specific classes of testicular cells. Separation of cells from immature mice indicated that cells prior to the midpachytene stage contain no LDH-X. Measurement of LDH-X levels in cells separated from adult mice and in testicular homogenates prepared at various times after irradiation indicated that the highest level of LDH-X per cell (normalized for DNA content) was in spermatids. Synthesis of LDH-X was determined, after in vivo injection of [3H]valine, by measurement of the radioactivity in LDH-X precipitated with specific antiserum. After irradiation, the rate of LDH-X synthesis remained constant, despite the loss of early primary spermatocytes. In separated cells, the rate of LDH-X synthesis was highest in late pachytene spermatocytes, lower in round spermatids, and even lower, but still significant, in elongated spermatids. Therefore, the synthesis of LDH-X begins at a specific point during spermatogenesis, the midpachytene stage of spermatocyte development, and continues throughout spermatid differentiation.  相似文献   

10.
11.
The localization of vasa homolog protein in the spermatogenic cells of mice, rats, and guinea pigs was studied by immunofluorescence and electron microscopies with the antibody against mouse vasa homolog (MVH) protein. By immunofluorescence microscopy, four types of granular staining patterns were identified: (1) fine particles observed in diplotene and meiotic cells, (2) small granules associated with a mitochondrial marker and appearing in pachytene spermatocytes after stage V, (3) strands lacking the mitochondrial marker in late spermatocytes, and (4) large irregularly shaped granules in round spermatids. Immunoelectron microscopy defined the ultrastructural profiles of these MVH protein-positive granules: the first type consisted of small dense particles, the second had intermitochondrial cement (IMC), the third type, consisting of strands, had loose aggregates of either material dissociated from IMC or 70–90-nm particles, and the fourth had typical chromatoid bodies (CBs). The results suggest that MVH proteins function in these components of nuage. MVH protein-positive structures other than CBs disappeared during meiosis and CB appeared first in early spermatids. The results suggest that the formation of nuage is discontinued between spermatocytes and spermatids. The formation of nuage in spermatocytes and of CB in spermatids is discussed.  相似文献   

12.
Polystyrene particles (size range 300 nm-3 microns diameter) were radioiodinated and their capture by rat peritoneal macrophages measured in vitro. For unmodified particles, most efficient accumulation was observed using a diameter of 600 nm (Endocytic Index (E.I.) = 16.4 +/- 2.9 microliters/10(6) cells/h). Particles (3 microns diameter) which had been modified to become more hydrophilic by hydroxymethylation showed an increased rate of capture (E.I. = 136.6 +/- 91.2 microliters/10(6) cells/h). Following intraperitoneal administration to rats, unmodified 3 micron particles showed selective accumulation in the omentum (18.4% injected dose/g), and this was increased for the hydroxymethylated bead (35.3% dose/g). The smaller (800 nm) particles were better able to leave the peritoneal compartment. Radiolabelled particles isolated from a peritoneal wash after 5 h were mostly cell-associated (72-86%, depending on the type of particle).  相似文献   

13.
The regulation of testicular hCG binding and steroidogenesis in adult mutant mice with hereditary diabetes and obesity was studied. Low doses of hCG caused no change in hCG binding in obese (ob/ob) mice, whereas, in diabetic (db/db) mice, the increase in binding measured 24 h after hCG administration was not as great as in normal males. Intermediate doses of hCG caused a decrease in hCG binding in obese and normal mice, but not in diabetic animals. However, 72 h after injection of intermediate doses of hCG, a decrease in hCG binding also was observed in diabetic mice. Plasma testosterone was elevated 24 h after hCG injection in all types of mice studied, but the increase in diabetic mice was smaller than in normal animals. However, 72 h after treatment with hCG, plasma testosterone was still elevated in diabetic mice, but not in normal males. In vitro, hCG stimulated testicular testosterone synthesis in all groups of mice, but the observed increase was smaller in diabetic and obese than in normal animals. Plasma LH levels were higher in diabetic than in normal mice, whereas plasma FSH and prolactin levels were lower in obese mice than in normal animals. All parameters (i.e., LH receptors and circulating hormone levels) measured in yellow (Ay/a) mice were similar to those in normal (a/a) mice. The present study indicates that in these models for noninsulin-dependent diabetes, the testicular metabolism of LH receptors and capacity to secrete steroids is altered.  相似文献   

14.
Thirty crossbred bulls, 12 to 13 mo of age, were used to examine the relationship of testosterone and progesterone concentrations and testosterone: progesterone ratio to measurements of testicular function. Bulls were allotted to 1 of 2 groups based on scrotal circumferences (SC) as follows: the Small SC (n=20) group had scrotal circumference less than 28 cm while the Large SC (n=10) group had scrotal circumference greater than 28 cm. All bulls were administered GnRH (100 mug, im), and blood was obtained immediately prior to injection (t=0), 30 min after injection (t=30) and 2 to 3 h after injection (t=150). Serum was assayed for concentrations of testosterone and progesterone. Semen was evaluated for the percentage of morphologically normal spermatozoa. Testicular parenchyma was sectioned and stained, and 300 cross sections per testis of seminiferous tubules were examined under a light microscope and classified as either active (spermatocytes and spermatids present) or inactive (no spermatocytes or spermatids present). Although progesterone concentrations varied widely (range: 21 pg/ml to 1070 pg/ml), repeated measurements from individual bulls were highly correlated (r(2)=0.74) and did not change significantly (P > 0.1) in response to GnRH treatment. Small SC bulls had a higher percentage of inactive seminiferous tubules (P < 0.001) and a lower percentage morphologically normal spermatozoa (P < 0.001) than Large SC bulls, but no differences in testosterone or progesterone concentrations or in the ratio of testosterone: progesterone were detected. Mean serum testosterone concentration increased (P < 0.0001) by 30 min after GnRH treatment and continued to increase (P < 0.0001) through t=150 but did not differ (p > 0.1) between groups. Normal testosterone secretion in response to GnRH injection suggested that no biochemical lesions in the testosterone production pathway were present in bulls with very small scrotal circumference.  相似文献   

15.
Current methods of administering busulfan to remove the endogenous germ cells cause hematopoietic toxicity, require special instruments and a narrow transplantation time. We use a direct testicular injection of busulfan method for preparing recipients for SSC transplantation. Male ICR mice (recipients) were divided into four groups, and two experimental groups were treated with a bilateral testicular injection of 4 or 6 mg/kg/side busulfan (n = 60 per concentration group). Mice received an intraperitoneal injection (i.p.) of 40 mg/kg busulfan (n = 60, positive control) and bilateral testicular injections of 50% DMSO (n = 60, negative control). Donor SSCs from RFP-transgenic C57BL/6J mice were introduced into the seminiferous tubules of each recipient testis via efferent duct injection on day 16–17 after busulfan treatment. Recipient mice mated with mature female ICR mice and the number of progeny was recorded. The index detected at day 14, 21, 28, 35 and 70 after busulfan treatment. Blood analysis shows that the toxicity of busulfan treated groups was much lower than i.p. injection groups. Fertility was restored in mice treated with busulfan and donor-derived offspring were obtained after SSC transplantation. Our study indicated that intratesticular injection busulfan for the preparation of recipients in mice is safe and feasible.  相似文献   

16.
Said S  Han MS  Niwa K 《Theriogenology》2003,60(2):359-369
The possibility of obtaining normal development of rat oocytes following intracytoplasmic injection of rat sperm heads, obtained by sonicating spermatozoa from testes and epididymides, was evaluated. Irrespective of the source of spermatozoa, sperm heads were successfully injected into approximately 45% of oocytes used; after 9-12h of culture, approximately 55% of injected oocytes still had normal morphology. Of the oocytes injected with testicular sperm heads 45% were activated, with a female pronucleus and a second polar body, but significantly more oocytes (approximately 68%) injected with caput and cauda epididymal sperm heads were activated. Male pronuclear formation was observed in 67-84% of the activated oocytes, with no difference in the proportions among the different sources of sperm heads. When zygotes showing two pronuclei and a second polar body at 10h after injection were cultured in conditions that support development of 1-cell embryos produced in vivo, no embryos derived from testicular sperm heads developed to blastocysts after 120 h of culture. Development of embryos derived from cauda sperm heads was significantly higher at all points of assessment, while embryos from caput sperm showed an intermediate degree of development, compared with embryos from testicular spermatozoa. However, similar proportions (2-4%) of 1-cell embryos derived from all three groups of sperm heads developed into normal offspring after transfer to foster mothers; of the limited number of offspring tested, all were fertile. These results demonstrate that sperm heads from all sources tested are similar in their ability to contribute to full development of normal, fertile offspring.  相似文献   

17.
The transport of radioactive iron across the seminiferous tubules was analyzed in vivo by light-microscope quantitative radioautography. At 5 min after a single intratesticular injection of 55Fe-transferrin, a strong labeling of the basal aspect of the seminiferous epithelium was observed. Between 30 min and 2 h, the labeling on the basal aspect of the seminiferous epithelium decreased. This decrease was accompanied by a substantial increase of the radioautographic reaction over the cellular elements in the adluminal compartment. These results were consistent with the demonstration of 59Fe associated with meiotic spermatocytes and differentiating spermatids isolated by velocity sedimentation from testes injected with 59Fe-transferrin. Furthermore, after a single intratesticular injection of 59Fe-labeled human transferrin, radiolabeled rat transferrin was immunoprecipitated from homogenates of isolated tubules with a specific antibody and appeared as a single radioactive band on fluorographs of urea/polyacrylamide gels. Similarly, 59Fe-labeled rat transferrin but not 125I-transferrin was immunoprecipitated from rete testis fluids of testes infused with either 59Fe- or 125I-labeled human transferrin. Finally, the synthesis of testicular transferrin in vivo was demonstrated in fluorographs of immunoprecipitated transferrin after an intratesticular injection of 35S-methionine in rats whose livers were excluded from the general circulation by ligation of both the hepatic artery and the portal vein. Thus, our results demonstrated a unidirectional system of iron transport from the basal compartment of the seminiferous epithelium to the germ cells in the adluminal compartment involving two distinct transferrins, i.e., a serum transferrin and a testicular transferrin synthesized by the seminiferous epithelium.  相似文献   

18.
The regulation of testicular LH/hCG receptors was studied in Syrian (golden) hamsters with testicular atrophy induced by exposure to short photoperiod (5L:19D) and in gonadally active hamsters kept in a long photoperiod (14L:10D). By 24 h after injection of hCG, long-photoperiod hamsters showed a dose-related decrease in the number of testicular LH/hCG receptors. At 48 and 72 h, there was a recovery from this 'down-regulation'. The recovery was much faster than has been reported for the rat and mouse, and it resulted in elevation of testicular LH/hCG receptor concentrations above basal values. Hamsters with short photoperiod-induced testicular atrophy showed an increase in testicular LH/hCG receptors after injection of hCG, except for animals injected with a very high dose. The hCG-induced increase in testicular LH/hCG binding in these animals was associated with reappearance of testosterone responses to subsequent hCG stimulation. Response of testicular LH/hCG receptors to hCG in prepubertal hamsters resembled that measured in animals with short photoperiod-induced gonadal atrophy.  相似文献   

19.
Polystyrene particles (size range 300nm-3μm diameter) were radioiodinated and their capture by rat peritoneal macrophages measured in vitro. For unmodified particles, most efficient accumulation was observed using a diameter of 600nm (Endocytic Index (E.I.) = 16.4 ± 2.9μl/106cells/h). Particles (3μm diameter) which had been modified to become more hydrophilic by hydroxymethylation showed an increased rate of capture (E.I. = 136.6 ± 91.2μl/106cells/h). Following intraperitoneal administration to rats, unmodified 3μm particles showed selective accumulation in the omentum (18.4% injected dose/g), and this was increased for the hydroxymethylated bead (35.3% dose/g). The smaller (800 nm) particles were better able to leave the peritoneal compartment. Radiolabelled particles isolated from a peritoneal wash after 5h were mostly cell-associated (72–86%, depending on the type of particle).  相似文献   

20.
The present study was designed to investigate the effect of acute administration of gonadotropin on testicular steroid secretion in dog and rat. Animals received a subcutaneous injection of 25 IU/kg of hCG or 1.5 microgram/kg of [D-Trp6, des-Gly-NH2(10)]LHRH ethylamide (LHRH-A). Testosterone is the predominant steroid measured, in dog plasma, under basal conditions. After LHRH-A injection, testosterone levels are not significantly changed while dehydroepiandrosterone and androst-5-ene-3 beta,17 beta-diol (delta 5-steroids) levels are stimulated by almost 20-fold (P less than 0.01). When dogs were injected with hCG, we also observed a marked stimulation of dehydroepiandrosterone levels (20-fold; P less than 0.01) accompanied by a small increase of plasma testosterone concentration (2-fold, P less than 0.01). In rats injected with either hCG or the LHRH analogue, an increment of plasma testosterone (7-fold, P less than 0.01) is detected in the first hour while plasma dehydroepiandrosterone levels are slightly stimulated. Moreover, in rats injected with hCG, low plasma steroid levels are present between 4-12 h after injection due to testicular desensitization. This marked decrease is then followed by a second peak of steroid secretion 24 h later. Acute testicular steroidogenic responsiveness to hCG on the dog is, however, different: after stimulation, the levels of plasma dehydroepiandrosterone are maintained at a plateau and slowly decline after 24-48 h. Our data indicate that in dogs, stimulation of testicular steroidogenesis leads to an increase of plasma delta 5-steroid levels while the same stimuli cause, in the rat, a stimulation of delta 4-androgen, particularly testosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号