首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is unknown whether late preconditioning (PC) enhances the recovery of left ventricular (LV) function after a myocardial infarction. Thus 25 conscious rabbits were subjected to a 30-min coronary occlusion followed by 28 days of reperfusion after PC 24 h earlier with either ischemia or nitric oxide donor administration [S-nitroso-N-acetylpenicillamine (SNAP)]. The recovery of wall thickening (WTh) after reperfusion was significantly improved in the ischemic PC and SNAP PC groups compared with controls, both at rest and during dobutamine stress. Interestingly, neither ischemia- nor SNAP-induced late PC attenuated myocardial stunning from day 1 through day 14. Infarct size was smaller in the ischemic PC and SNAP PC groups compared with controls. In all groups, WTh at 28 days was positively and linearly related to the percentage of viable tissue in the region underlying the ultrasonic crystal (r = 0.90), indicating that the improvement in LV function after both ischemia-induced and NO donor-induced late PC can be fully explained by the reduction in infarct size; a separate effect of late PC on LV remodeling or LV contractility need not be invoked. In conclusion, in conscious rabbits late PC, induced either by ischemia or pharmacologically, not only limits infarct size but also enhances the recovery of LV function after myocardial infarction. This finding has important clinical implications and provides triphenyltetrazolium chloride-independent evidence that late PC limits myocellular death after sustained ischemia.  相似文献   

2.
We previously demonstrated that injection of IL-2-activated natural killer (NK) cells contribute to vascular remodeling via a4b7 integrin and killer cell lectin-like receptor (KLRG) 1 and promote cardiac repair following myocardial infarction (MI). The aim of the present study is to test the hypothesis that injection of recombinant human interleukin (rhIL)-2 improves angiogenesis and preserves heart function after MI. A single IV injection of rhIL-2 two days following MI improved by 27.7% the left ventricular (LV) fractional shortening of immune competent (C57Bl6) mice, but had no effect on cardiac function of immune-deficient (NOD-SCID IL2Rγnull) mice. Immunohistochemical analysis of C57Bl6 cross sections of heart revealed that collagen deposition was reduced by 23.1% and that capillary density was enhanced in the scar area and the border zone of the infarct respectively by 22.4% and 33.6% following rhIL-2 injection. In addition, rhIL-2 enhanced 1.6-fold the in vivo endothelial cell proliferation index and 1.8-fold the number of NK cell infiltrating the infarcted heart, but had no effect on the number of cardiac CD4 and CD8 cells. In vitro, rhIL-2 activated NK cells enhanced cardiac endothelial cell proliferation by 17.2%. Here we show that a single IV injection of rhIL-2 positively impacted cardiac function by improving angiogenesis through a process involving NK cells.  相似文献   

3.
This study was aimed at investigating whether Elabela (ELA) gene therapy can promote angiogenesis in the treatment of myocardial infarction (MI). The fusion expression plasmid pAAV-3 × Flag/ELA-32 was successfully constructed using molecular cloning technique. The model of acute MI was established by ligating the left anterior descending coronary artery in mice. Adeno-associated virus serotype 9 (AAV9) was injected into the surrounding myocardium and tail vein immediately after the model was established. AAV was injected again from the tail vein one week later. Compared with the MI+PBS (control) group, the serum N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration, and the values of left ventricular end-diastolic diameter (LVDd) and left ventricular end-systolic diameter (LVDs) of the MI+AAV-ELA (gene therapy) group were significantly decreased, while the value of left ventricular ejection fraction was significantly increased at 2 and 4 weeks after operation. Compared with the control group, the expression of CD105 and vWF and the percentage of CD31- and Ki67–co-positive cells were significantly increased in the gene therapy group. Moreover, the expressions of apelin peptide jejunum (APJ) receptor, vascular endothelial growth factor (VEGF), VEGFR2, Jagged1 and Notch3 in the heart tissue around the infarction were up-regulated in mice with gene therapy. The results suggest that ELA activates VEFG/VEGFR2 and Jagged1/Notch3 pathways through APJ to promote angiogenesis after myocardial infarction. ELA gene therapy may be used in the treatment of ischaemic cardiomyopathy in future.  相似文献   

4.
Inhibition of mitochondrial permeability transition pore (mPTP) opening by cyclosporin A or ischemic postconditioning attenuates lethal reperfusion injury. Its impact on major post-myocardial infarction events, including worsening of left ventricular (LV) function and death, remains unknown. We sought to determine whether pharmacological or postconditioning-induced inhibition of mPTP opening might improve functional recovery and survival following myocardial infarction in mice. Anesthetized mice underwent 25 min of ischemia and 24 h (protocol 1) or 30 days (protocol 2) of reperfusion. At reperfusion, they received no intervention (control), postconditioning (3 cycles of 1 min ischemia-1 min reperfusion), or intravenous injection of the mPTP inhibitor Debio-025 (10 mg/kg). At 24 h of reperfusion, mitochondria were isolated from the region at risk for assessment of the Ca(2+) retention capacity (CRC). Infarct size was measured by triphenyltetrazolium chloride staining. At 30 days of reperfusion, mortality and LV contractile function (echocardiography) were evaluated. Postconditioning and Debio-025 significantly improved Ca(2+) retention capacity (132 +/- 13 and 153 +/- 31 vs. 53 +/- 16 nmol Ca(2+)/mg protein in control) and reduced infarct size to 35 +/- 4 and 32 +/- 7% of area at risk vs. 61 +/- 6% in control (P < 0.05). At 30 days, ejection fraction averaged 74 +/- 6 and 77 +/- 6% in postconditioned and Debio-025 groups, respectively, vs. 62 +/- 12% in the control group (P < 0.05). At 30 days, survival was improved from 58% in the control group to 92 and 89% in postconditioned and Debio-025 groups, respectively. Inhibition of mitochondrial permeability transition at reperfusion improves functional recovery and mortality in mice.  相似文献   

5.
6.
Matrix metalloproteinases (MMPs) are postulated to be necessary for neovascularization during wound healing. MMP-9 deletion alters remodeling postmyocardial infarction (post-MI), but whether and to what degree MMP-9 affects neovascularization post-MI is unknown. Neovascularization was evaluated in wild-type (WT; n = 63) and MMP-9 null (n = 55) mice at 7-days post-MI. Despite similar infarct sizes, MMP-9 deletion improved left ventricular function as evaluated by hemodynamic analysis. Blood vessel quantity and quality were evaluated by three independent studies. First, vessel density was increased in the infarct of MMP-9 null mice compared with WT, as quantified by Griffonia (Bandeiraea) simplicifolia lectin I (GSL-I) immunohistochemistry. Second, preexisting vessels, stained in vivo with FITC-labeled GSL-I pre-MI, were present in the viable but not MI region. Third, a technetium-99m-labeled peptide (NC100692), which selectively binds to activated alpha(v)beta3-integrin in angiogenic vessels, was injected into post-MI mice. Relative NC100692 activity in myocardial segments with diminished perfusion (0-40% nonischemic) was higher in MMP-9 null than in WT mice (383 +/- 162% vs. 250 +/- 118%, respectively; P = 0.002). The unique finding of this study was that MMP-9 deletion stimulated, rather than impaired, neovascularization in remodeling myocardium. Thus targeted strategies to inhibit MMP-9 early post-MI will likely not impair the angiogenic response.  相似文献   

7.

Background

Spinal cord injury is a major cause of long-term disability and has no current clinically accepted treatment. Leptin, an adipocyte-derived hormone, is best known as a regulator of food intake and energy expenditure. Interestingly, several studies have demonstrated that leptin has significant effects on proliferation and cell survival in different neuropathologies. Here, we sought to evaluate the role of leptin after spinal cord injury.

Findings

Based on its proposed neuroprotective role, we have evaluated the effects of a single, acute intraparenchymal injection of leptin in a clinically relevant animal model of spinal cord injury. As determined by quantitative Real Time-PCR, endogenous leptin and the long isoform of the leptin receptor genes show time-dependent variations in their expression in the healthy and injured adult spinal cord. Immunohistochemical analysis of post-injury tissue showed the long isoform of the leptin receptor expression in oligodendrocytes and, to a lesser extent, in astrocytes, microglia/macrophages and neurons. Moreover, leptin administered after spinal cord injury increased the expression of neuroprotective genes, reduced caspase-3 activity and decreased the expression of pro-inflammatory molecules. In addition, histological analysis performed at the completion of the study showed that leptin treatment reduced microglial reactivity and increased caudal myelin preservation, but it did not modulate astroglial reactivity. Consequently, leptin improved the recovery of sensory and locomotor functioning.

Conclusions

Our data suggest that leptin has a prominent neuroprotective and anti-inflammatory role in spinal cord damage and highlights leptin as a promising therapeutic agent.  相似文献   

8.
Cellular therapeutic neovascularization has been successfully performed in clinical trials for patients with ischaemia diseases. Despite the vast knowledge of cardiovascular disease and circadian biology, the role of the circadian clock in regulating angiogenesis in myocardial infarction (MI) remains poorly understood. In this study, we aimed to investigate the role and underlying mechanisms of Period 2 (Per2) in endothelial progenitor cell (EPC) function. Flow cytometry revealed lower circulating EPC proportion in per2−/− than in wild-type (WT) mice. PER2 was abundantly expressed in early EPCs in mice. In vitro, EPCs from per2−/− mice showed impaired proliferation, migration, tube formation and adhesion. Western blot analysis demonstrated inhibited PI3k/Akt/FoxO signalling and reduced C-X-C chemokine receptor type 4 (CXCR4) protein level in EPCs of per2−/− mice. The impaired proliferation was blocked by activated PI3K/Akt/FoxO signalling. Direct interaction of CXCR4 and PER2 was detected in WT EPCs. To further study the effect of per2 on in vivo EPC survival and angiogenesis, we injected saline or DiI-labelled WT or per2−/− EPC intramyocardially into mice with induced MI. Per2−/− reduced the retention of transplanted EPCs in the myocardium, which was associated with significantly reduced DiI expression in the myocardium of MI mice. Decreased angiogenesis in the myocardium of per2−/− EPC-treated mice coincided with decreased LV function and increased infarct size in the myocardium. Per2 may be a key factor in maintaining EPC function in vitro and in therapeutic angiogenesis in vivo.  相似文献   

9.
Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor-β superfamily. BMPs regulate several crucial aspects of embryonic development and organogenesis. The reemergence of BMPs in the injured adult CNS suggests their involvement in the pathogenesis of the lesion. Here, we demonstrate that BMPs are potent inhibitors of axonal regeneration in the adult spinal cord. The expression of BMP-2/4 is elevated in oligodendrocytes and astrocytes around the injury site following spinal cord contusion. Intrathecal administration of noggin – a soluble BMP antagonist—leads to enhanced locomotor activity and reveals significant regrowth of the corticospinal tract after spinal cord contusion. Thus, BMPs play a role in inhibiting axonal regeneration and limiting functional recovery following injury to the CNS.  相似文献   

10.
Elevated serine elastase activity after myocardial infarction can contribute to remodeling associated with left ventricular dilatation and dysfunction. We therefore assessed the effects of overexpressing the selective serine elastase inhibitor elafin in transgenic mice in which a myocardial infarction was caused by ligation of the left anterior descending coronary artery (LAD). Elevated serine elastase activity was observed in nontransgenic littermates as early as 6 h after LAD ligation and persisted at 4 and 7 days but not in sham-operated or elafin-overexpressing transgenic mice. Myeloperoxidase activity (index of inflammatory cells) and matrix metalloproteinase 2 were also increased but only at 4 and 7 days and only in nontransgenic mice (P < 0.05 for both comparisons), and this increase correlated with inflammatory cell infiltration. Echocardiographic study at 4 days revealed indexes of diastolic dysfunction in nontransgenic versus elafin-overexpressing mice (P < 0.05). Morphometric and biochemical analyses at 28 days indicated impairment in cardiac performance, with greater scar thinning and infarct expansion in nontransgenic versus elafin transgenic littermates (P < 0.05 for all comparisons). Thus serine elastase inhibition appears to suppress inflammation, cardiac dilatation, and dysfunction after myocardial infarct.  相似文献   

11.
In rodents, after spinal lesion, neutralizing the neurite growth inhibitor Nogo-A promotes axonal sprouting and functional recovery. To evaluate this treatment in primates, 12 monkeys were subjected to cervical lesion. Recovery of manual dexterity and sprouting of corticospinal axons were enhanced in monkeys treated with Nogo-A-specific antibody as compared to monkeys treated with control antibody.  相似文献   

12.
Vascular endothelial growth factor (VEGF) is a well‐known angiogenic factor, however its ability in promoting therapeutic angiogenesis following myocardial infarction (MI) is limited. Here, we aimed to investigate whether dual treatment with insulin‐like growth factor binding protein‐4 (IGFBP‐4), an agent that protects against early oxidative damage, can be effective in enhancing the therapeutic effect of VEGF following MI. Combined treatment with IGFBP‐4 enhanced VEGF‐induced angiogenesis and prevented cell damage via enhancing the expression of a key angiogenic factor angiopoietin‐1. Dual treatment with the two agents synergistically decreased cardiac fibrosis markers collagen‐I and collagen‐III following MI. Importantly, while the protective action of IGFBP‐4 occurs at an early stage of ischemic injury, the action of VEGF occurs at a later stage, at the onset angiogenesis. Our findings demonstrate that VEGF treatment alone is often not enough to protect against oxidative stress and promote post‐ischemic angiogenesis, whereas the combined treatment with IGFBP4 and VEGF can utilize the dual roles of these agents to effectively protect against ischemic and oxidative injury, and promote angiogenesis. These findings provide important insights into the roles of these agents in the clinical setting, and suggest new strategies in the treatment of ischemic heart disease.  相似文献   

13.
Despite mounting pre-clinical and clinical evidence of the beneficial effects of cell-based therapy, optimal cell dosing and delivery approaches have not been identified. Cardiospheres are self-assembling three-dimensional (3D) microtissues formed by cardiac stem cells and supporting cell types. The ability of cardiospheres to augment cardiac function has been demonstrated in animal models of ischemic cardiomyopathy. In this study, we studied the dose dependence of the benefits of human cardiospheres, delivered via intramyocardial injection, upon cardiac function and ventricular remodelling in SCID mice with acute myocardial infarction. Four doses of cardiospheres were used: 1 × 10(4), 5 × 10(4), 1 × 10(5) and 5 × 10(5) (expressed as number of plated cardiosphere-forming cells). Acute (24 hr) cell retention rates in all groups were similar. Functional assessment and quantitative heart morphometry indicated benefit from higher cell doses (≥5 × 10(4)) in terms of ejection fraction, infarct size and capillary density. Histological analysis indicated that the dose-dependent benefit was primarily because of indirect effects of transplanted cells. The results provide scalable data on cardiosphere dosing for intramyocardial injection.  相似文献   

14.
Cardiovascular disease is the leading cause of death in individuals over 60 years old. Aging is associated with an increased prevalence of coronary artery disease and a poorer prognosis following acute myocardial infarction (MI). With age, senescent cells accumulate in tissues, including the heart, and contribute to age‐related pathologies. However, the role of senescence in recovery following MI has not been investigated. In this study, we demonstrate that treatment of aged mice with the senolytic drug, navitoclax, eliminates senescent cardiomyocytes and attenuates profibrotic protein expression in aged mice. Importantly, clearance of senescent cells improved myocardial remodelling and diastolic function as well as overall survival following MI. These data provide proof‐of‐concept evidence that senescent cells are major contributors to impaired function and increased mortality following MI and that senolytics are a potential new therapeutic avenue for MI.  相似文献   

15.
Nogo-B (Reticulon 4B) is reportedly a regulator of angiogenesis during the development and progression of cancer. However, whether Nogo-B regulates angiogenesis and post-myocardial infarction (MI) cardiac repair remains elusive. In the present study, we aimed to explore the role and underlying mechanisms of Nogo-B in cardiac repair during MI. We observed an increased expression level of Nogo-B in the heart of mouse MI models, as well as in isolated cardiac microvascular endothelial cells (CMECs). Moreover, Nogo-B was significantly upregulated in CMECs exposed to oxygen-glucose deprivation (OGD). Nogo-B overexpression in the endothelium via cardiotropic adeno-associated virus serotype 9 (AAV9) with the mouse endothelial-specific promoter Tie2 improved heart function, reduced scar size, and increased angiogenesis. RNA-seq data indicated that Notch signaling is a deregulated pathway in isolated CMECs along the border zone of the infarct with Nogo-B overexpression. Mechanistically, Nogo-B activated Notch1 signaling and upregulated Hes1 in the MI hearts. Inhibition of Notch signaling using a specific siRNA and γ-secretase inhibitor abolished the promotive effects of Nogo-B overexpression on network formation and migration of isolated cardiac microvascular endothelial cells (CMECs). Furthermore, endothelial Notch1 heterozygous deletion inhibited Nogo-B-induced cardioprotection and angiogenesis in the MI model. Collectively, this study demonstrates that Nogo-B is a positive regulator of angiogenesis by activating the Notch signaling pathway, suggesting that Nogo-B is a novel molecular target for ischemic disease.Subject terms: Heart failure, Ischaemia  相似文献   

16.
Recent studies have been directed at modulating the heart failure process through inhibition of activated matrix metalloproteinases (MMPs). We hypothesized that a loss of MMP inhibitory control by tissue inhibitor of MMP (TIMP)-1 deficiency alters the course of postinfarction chamber remodeling and induced chronic myocardial infarction (MI) in wild-type (WT) and TIMP-1(-/-) mice. Left ventricular (LV) pressure-volume loops obtained from WT and TIMP-1(-/-) mice demonstrated that LV end-diastolic volume [52 +/- 4 (WT) vs. 71 +/- 6 (TIMP-1(-/-)) microl] and LV end-diastolic pressure [9.0 +/- 1.2 (WT) vs. 12.7 +/- 1.4 (TIMP-1(-/-)) mmHg] were significantly increased in the TIMP-1(-/-) mice 2 wk after MI. LV contractility was reduced to a similar degree in the WT and TIMP-1(-/-) groups after MI, as indicated by a significant fall in the LV end-systolic pressure-volume relationship. Ventricular weight and cross-sectional areas of LV myocytes were significantly increased in TIMP-1(-/-) mice, indicating that the hypertrophic response was more pronounced. The observed significant loss of fibrillar collagen in the TIMP-1(-/-) controls may have been an important contributory factor for the observed LV alterations in the TIMP-1(-/-) mice after MI. These findings demonstrate that TIMP-1 deficiency amplifies adverse LV remodeling after MI in mice and emphasizes the importance of local endogenous control of cardiac MMP activity by TIMP-1.  相似文献   

17.
Objectives: This study examined the effects of nitrate tolerance (NT) on myocardial ischemia reperfusion (MI/R) injury and elucidated the potential mechanisms involved. Furthermore, the effects of GSH on postischemic myocardial apoptosis in NT rats were investigated. Methods and results: Male Sprague–Dawley rats were randomized to receive nitroglycerin (60 μg/kg/h) or saline for 12 h followed by 40 min of MI and 4 h of reperfusion. Myocardial apoptosis, infarct size, nitrotyrosine formation, plasma CK and LDH activity, and cardiac function were determined. MI/R resulted in significant apoptotic cell death, which was further increased in animals with NT. In addition, NT further increased plasma CK and LDH activity, enlarged infarct size, and impaired cardiac functional recovery after ischemia. Myocardial nitrotyrosine, a footprint for cytotoxic reactive nitrogen species formation, was further enhanced in the NT heart after MI/R. Treatment of NT animals with exogenous GSH inhibited nitrotyrosine formation, reduced apoptosis, decreased infarct size, and improved cardiac functional recovery. Conclusion: Our results demonstrate that nitrate tolerance markedly enhances MI/R injury and that increased peroxynitrite formation likely plays a role in this pathologic process. In addition, our results suggest that GSH could decrease peroxynitrite formation and reduce MI/R injury in nitrate tolerant hearts.  相似文献   

18.
19.
Heart rate recovery after exercise, thought to be related to cardiac parasympathetic tone, has been shown to be a prognostic tool for all-cause mortality. However, the relationship between this variable and confirmed susceptibility to ventricular fibrillation (VF) has not been established. Therefore, myocardial ischemia was induced with a 2-min occlusion of the left circumflex artery during the last minute of exercise in mongrel dogs with myocardial infarction (n = 105 dogs). VF was induced in 66 animals (susceptible), whereas the remaining 39 dogs had no arrhythmias (resistant). On a previous day, ECG was recorded and a time-series analysis of heart rate variability was measured 30, 60, and 120 s after submaximal exercise (treadmill running). The heart rate recovery was significantly greater in resistant dogs than in susceptible dogs at all three times, with the most dramatic difference at the 30-s mark (change from maximum: 48.1 +/- 3.6 beats/min, resistant dogs; 31.0 +/- 2.2 beats/min, susceptible dogs). Correspondingly, indexes of parasympathetic tone increased to a significantly greater extent in resistant dogs at 30 and 60 s after exercise. These differences were eliminated by atropine pretreatment. When considered together, these data suggest that resistant animals exhibit a more rapid recovery of vagal activity after exercise than those susceptible to VF. As such, postexercise heart rate recovery may help identify patients with a high risk for VF following myocardial infarction.  相似文献   

20.
Cardiac rupture can be fatal after myocardial infarction (MI). Experiments in animals revealed gender differences in rupture rate; however, patient data are controversial. We found a significantly higher rupture rate in testosterone-treated female mice within 1 wk after MI, whereas castration in males significantly reduced rupture. We hypothesized that testosterone may adversely affect remodeling after MI, exaggerating the inflammatory response and increasing cardiac rupture, whereas estrogen may be cardioprotective, attenuating early remodeling and reducing rupture rate. We studied the effect of gender and hormone manipulation on morphological and histological changes during early remodeling after MI in 4-wk-old male and female C57BL/6J mice and how these events could affect cardiac function. Females were randomly divided into 1) sham ovariectomy + placebo (s-ovx + P), 2) s-ovx + testosterone (T), 3) ovx + P, and 4) ovx + T; males were divided into 1) sham castration + P (s-cas + P), 2) s-cas + 17beta-estradiol (E), 3) cas + P, and 4) cas + E. At 6 wk after gonadectomy and hormone manipulation, MI was induced. Mice were randomly killed 1, 2, 4, 7, and 14 days after MI. The left ventricle was weighed and sectioned for evaluation of MI size, infarct expansion index (IEI), and neutrophil infiltration. Transthoracic echocardiography was performed in conscious mice in the 14-day group before organ harvest. Cardiac rupture rate and IEI were significantly higher in testosterone-treated females and noncastrated males than in controls; these effects were accompanied by enhanced neutrophil infiltration and pronounced deterioration of cardiac function and left ventricular dilatation. Ovariectomy in females and estrogen supplementation in males did not confer significant protection from cardiac rupture, IEI, or neutrophil infiltration. We concluded that, in mice, high testosterone levels enhance acute myocardial inflammation, adversely affecting myocardial healing and early remodeling, as indicated by increased cardiac rupture, and possibly causing deterioration of cardiac function after MI, and, conversely, estrogen seems to have no significant protective effect in the acute phase after MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号