首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Splicing of pre-mRNA in eukaryotes imprints the resulting mRNA with a specific multiprotein complex, the exon-exon junction complex (EJC), at the sites of intron removal. The proteins of the EJC, Y14, Magoh, Aly/REF, RNPS1, Srm160, and Upf3, play critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. Y14 and Magoh are of particular interest because they remain associated with the mRNA in the same position after its export to the cytoplasm and require translation of the mRNA for removal. This tenacious, persistent, splicing-dependent, yet RNA sequence-independent, association suggests an important signaling function and must require distinct structural features for these proteins. RESULTS: We describe the high-resolution structure and biochemical properties of the highly conserved human Y14 and Magoh proteins. Magoh has an unusual structure comprised of an extremely flat, six-stranded anti-parallel beta sheet packed against two helices. Surprisingly, Magoh binds with high affinity to the RNP motif RNA binding domain (RBD) of Y14 and completely masks its RNA binding surface. CONCLUSIONS: The structure and properties of the Y14-Magoh complex suggest how the pre-mRNA splicing machinery might control the formation of a stable EJC-mRNA complex at splice junctions.  相似文献   

2.
Structural insights into the exon junction complex   总被引:2,自引:0,他引:2  
In higher eukaryotes, the exon junction complex is loaded onto spliced mRNAs at a precise position upstream of exon junctions, where it remains during nuclear export and cytoplasmic localisation until it is removed during the first translation round. The exon junction core complex consists of four proteins that form a dynamic binding platform for a variety of peripheral factors involved in mRNA metabolism. In the complex, mRNA binding is mediated by the DEAD-box protein eIF4AIII, and inhibition of its ATPase activity forms the mechanistic basis for the long-term stability of the complex. Recent crystal structures of the exon junction complex and eIF4AIII have provided the structural framework for investigating the function of the eIF4AIII ATPase and for localisation of surface patches involved in binding peripheral factors. Additionally, by comparison with the structure of a second DEAD-box protein also bound to RNA and ATP, general principles for the ATPase and unwinding/mRNP remodelling activities for this important group of enzymes can be proposed on the basis of atomic structures.  相似文献   

3.
Over the past decade many studies have revealed a complex web of interconnections between the numerous steps required for eukaryotic gene expression. One set of interconnections link nuclear pre-mRNA splicing and the subsequent metabolism of the spliced mRNAs. It is now apparent that the means of connection is a set of proteins, collectively called the exon junction complex, which are deposited as a consequence of splicing upstream of mRNA exon-exon junctions.  相似文献   

4.
The exon junction complex (EJC) is deposited on mRNAs as a consequence of splicing and influences postsplicing mRNA metabolism. The Mago–Y14 heterodimer is a core component of the EJC. Recently, the protein PYM has been identified as an interacting partner of Mago–Y14. Here we show that PYM is a cytoplasmic RNA-binding protein that is excluded from the nucleus by Crm1. PYM interacts directly with Mago–Y14 by means of its N-terminal domain. The crystal structure of the Drosophila ternary complex at 1.9 Å resolution reveals that PYM binds Mago and Y14 simultaneously, capping their heterodimerization interface at conserved surface residues. Formation of this ternary complex is also observed with the human proteins. Mago residues involved in the interaction with PYM have been implicated in nonsense-mediated mRNA decay (NMD). Consistently, human PYM is active in NMD tethering assays. Together, these data suggest a role for PYM in NMD.  相似文献   

5.
The metazoan proteins UAP56, REF1, and NXF1 are thought to bind sequentially to mRNA to promote its export to the cytoplasm: UAP56 is thought to recruit REF1 to nascent mRNA; REF1 acts as an adaptor protein mediating the association of NXF1 with mRNA, whereas NXF1 translocates the mRNA across the nuclear pore complex. REF1 is a component of the exon-exon junction complex (EJC); thus, the EJC is thought to play a role in the export of spliced mRNA. NXF1 and UAP56 are essential for mRNA export. An essential role for metazoan REF1 or the additional EJC proteins in this process has not been established. Contrary to expectation, we show that REF1 and the additional components of the EJC are dispensable for export of bulk mRNA in Drosophila cells. Only when REF1 and RNPS1 are codepleted, or when all EJC proteins are simultaneously depleted is a partial nuclear accumulation of polyadenylated RNAs observed. Because a significant fraction of bulk mRNA is detected in the cytoplasm of cells depleted of all EJC proteins, we conclude that additional adaptor protein(s) mediate the interaction between NXF1 and cellular mRNAs in metazoa. Our results imply that the essential role of UAP56 in mRNA export is not restricted to the recruitment of REF1.  相似文献   

6.
7.

Background

The exon junction complex (EJC) is a dynamic multi-protein complex deposited onto nuclear spliced mRNAs upstream of exon-exon junctions. The four core proteins, eIF4A3, Magoh, Y14 and MLN51, are stably bound to mRNAs during their lifecycle, serving as a binding platform for other nuclear and cytoplasmic proteins. Recent evidence has shown that the EJC is involved in the splicing regulation of some specific events in both Drosophila and mammalian cells.

Results

Here, we show that knockdown of EJC core proteins causes widespread alternative splicing changes in mammalian cells. These splicing changes are specific to EJC core proteins, as knockdown of eIF4A3, Y14 and MLN51 shows similar splicing changes, and are different from knockdown of other splicing factors. The splicing changes can be rescued by a siRNA-resistant form of eIF4A3, indicating an involvement of EJC core proteins in regulating alternative splicing. Finally, we find that the splicing changes are linked with RNA polymerase II elongation rates.

Conclusion

Taken together, this study reveals that the coupling between EJC proteins and splicing is broader than previously suspected, and that a possible link exists between mRNP assembly and splice site recognition.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0551-7) contains supplementary material, which is available to authorized users.  相似文献   

8.
Fanconi anemia (FA) is an autosomal recessive disorder characterized by aplastic anemia, cancer susceptibility, and cellular sensitivity to mitomycin C. Eight of the 11 cloned Fanconi anemia gene products (FANCA, -B, -C, -E, -F, -G, -L, and -M) form a multisubunit nuclear complex (FA core complex) required for monoubiquitination of a downstream FA protein, FANCD2. FANCL, which possesses three WD40 repeats and a plant homeodomain (PHD), is the putative E3 ubiquitin ligase subunit of the FA complex. Here, we demonstrate that the WD40 repeats of FANCL are required for interaction with other subunits of the FA complex. The PHD is dispensable for this interaction, although it is required for FANCD2 mono-ubiquitination. The PHD of FANCL also shares sequence similarity to the canonical RING finger of c-CBL, including a conserved tryptophan required for E2 binding by c-CBL. Mutation of this tryptophan in the FANCL PHD significantly impairs in vivo mono-ubiquitination of FANCD2 and in vitro auto-ubiquitination activity, and partially impairs restoration of mitomycin C resistance. We propose a model in which FANCL, via its WD40 region, binds the FA complex and, via its PHD, recruits an as-yet-unidentified E2 for mono-ubiquitination of FANCD2.  相似文献   

9.
The multiprotein exon junction complex (EJC) is assembled on mRNAs as a consequence of splicing. EJC core components maintain a stable grip on mRNAs even as the overall EJC protein composition evolves while mRNAs travel to the cytoplasm. Here we show that recombinant EJC subunits MLN51, MAGOH and Y14, together with the DEAD-box protein eIF4AIII bound to ATP, are necessary and sufficient to form a highly stable complex on single-stranded RNA. Cross-linking and RNase protection studies indicate that this recombinant complex recapitulates the EJC core. The stable association of the recombinant EJC core with RNA is maintained by inhibition of eIF4AIII ATPase activity by MAGOH-Y14. We elucidate the modalities of EJC binding to RNA and provide the first example of how cellular machineries may use RNA helicases to clamp several proteins onto RNA in stable and sequence-independent manners.  相似文献   

10.
Spindle assembly checkpoint proteins have been thought to reside in the peripheral corona region of the kinetochore, distal to microtubule attachment sites at the outer plate. However, recent biochemical evidence indicates that checkpoint proteins are closely linked to the core kinetochore microtubule attachment site comprised of the Knl1–Mis12–Ndc80 (KMN) complexes/KMN network. In this paper, we show that the Knl1–Zwint1 complex is required to recruit the Rod–Zwilch–Zw10 (RZZ) and Mad1–Mad2 complexes to the outer kinetochore. Consistent with this, nanometer-scale mapping indicates that RZZ, Mad1–Mad2, and the C terminus of the dynein recruitment factor Spindly are closely juxtaposed with the KMN network in metaphase cells when their dissociation is blocked and the checkpoint is active. In contrast, the N terminus of Spindly is ∼75 nm outside the calponin homology domain of the Ndc80 complex. These results reveal how checkpoint proteins are integrated within the substructure of the kinetochore and will aid in understanding the coordination of microtubule attachment and checkpoint signaling during chromosome segregation.  相似文献   

11.
12.
13.
14.
The exon junction complex (EJC), a set of proteins deposited on mRNAs as a consequence of pre-mRNA splicing, is a key effector of downstream mRNA metabolism. We have identified eIF4AIII, a member of the eukaryotic translation initiation factor 4A family of RNA helicases (also known as DExH/D box proteins), as a novel EJC core component. Crosslinking and antibody inhibition studies suggest that eIF4AIII constitutes at least part of the platform anchoring other EJC components to spliced mRNAs. A nucleocytoplasmic shuttling protein, eIF4AIII associates in vitro and in vivo with two other EJC core factors, Y14 and Magoh. In mammalian cells, eIF4AIII is essential for nonsense-mediated mRNA decay (NMD). Finally, a model is proposed by which eIF4AIII represents a new functional class of DExH/D box proteins that act as RNA clamps or 'place holders' for the sequence-independent attachment of additional factors to RNAs.  相似文献   

15.
Several apoptotic regulators, including Bcl-x, are alternatively spliced to produce isoforms with opposite functions. We have used an RNA interference strategy to map the regulatory landscape controlling the expression of the Bcl-x splice variants in human cells. Depleting proteins known as core (Y14 and eIF4A3) or auxiliary (RNPS1, Acinus, and SAP18) components of the exon junction complex (EJC) improved the production of the proapoptotic Bcl-x(S) splice variant. This effect was not seen when we depleted EJC proteins that typically participate in mRNA export (UAP56, Aly/Ref, and TAP) or that associate with the EJC to enforce nonsense-mediated RNA decay (MNL51, Upf1, Upf2, and Upf3b). Core and auxiliary EJC components modulated Bcl-x splicing through different cis-acting elements, further suggesting that this activity is distinct from the established EJC function. In support of a direct role in splicing control, recombinant eIF4A3, Y14, and Magoh proteins associated preferentially with the endogenous Bcl-x pre-mRNA, interacted with a model Bcl-x pre-mRNA in early splicing complexes, and specifically shifted Bcl-x alternative splicing in nuclear extracts. Finally, the depletion of Y14, eIF4A3, RNPS1, SAP18, and Acinus also encouraged the production of other proapoptotic splice variants, suggesting that EJC-associated components are important regulators of apoptosis acting at the alternative splicing level.  相似文献   

16.
Human transforming growth factor-β receptor type 2 (TGFβR2) mRNA harboring a premature translation termination codon (PTC) generated by frameshift mutation is targeted for nonsense-mediated translational repression (NMTR), rather than nonsense-mediated mRNA decay (NMD). Here we show that exon junction complex (EJC) downstream of a PTC plays an inhibitory role in translation of TGFβR2 mRNA. Translational repression by core EJC components occurs after formation of 80S ribosome complex, which is demonstrated using different types of internal ribosome entry sites (IRESes). Our findings implicate EJCs or core EJC components as negative regulators of translation.  相似文献   

17.
NF-kappaB essential modulator (NEMO) plays an essential role in the nuclear factor kappaB (NF-kappaB) pathway as a modulator of the two other subunits of the IkappaB kinase (IKK) complex, i.e. the protein kinases, IKKalpha and IKKbeta. Previous reports all envision the IKK complex to be a static entity. Using glycerol-gradient ultracentrifugation, we observed stimulus-dependent dynamic IKK complex assembly. In wild-type fibroblasts, the kinases and a portion of cellular NEMO associate in a 350-kDa high-molecular-mass complex. In response to constitutive NF-kappaB stimulation by Tax, we observed NEMO recruitment and oligomerization to a shifted high-molecular-mass complex of 440 kDa which displayed increased IKK activity. This stimulus-dependent oligomerization of NEMO was also observed using fluorescence resonance energy transfer after a transient pulse with interleukin-1beta. In addition, fully activated, dimeric kinases not bound to NEMO were detected in these Tax-activated fibroblasts. By glycerol gradient ultracentrifugation, we also showed that: (a) in fibroblasts deficient in IKKalpha and IKKbeta, NEMO predominantly exists as a monomer; (b) in NEMO-deficient fibroblasts, IKKbeta dimers are present that are less stable than IKKalpha dimers. Intriguingly, in resting Rat-1 fibroblasts, 160-kDa IKKalpha-NEMO and IKKbeta-NEMO heterocomplexes were observed as well as a significant proportion of NEMO monomer. These results suggest that most NEMO molecules do not form a tripartite IKK complex with an IKKalpha-IKKbeta heterodimer as previously reported in the literature but, instead, NEMO is able to form a complex with the monomeric forms of IKKalpha and IKKbeta.  相似文献   

18.
The assembly of gap junction channels was studied using mammalian cells expressing connexin (Cx) 26, 32 and 43 in which the carboxyl terminus was fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Intracellular targeting of Cx32-CFP and 43-GFP to gap junctions was disrupted by brefeldin A treatment and resulted in a severe loss of gap junctional intercellular communication reflected by low intercellular dye transfer. Cells expressing Cx43-GFP exposed to nocodazole showed normal targeting to gap junctions and dye transfer. Cx32 and 43 thus appear to be transported and assembled into gap junctions via the classical secretory pathway. In contrast, we found that assembly of Cx26-GFP into functional gap junctions was relatively unaffected by treatment of cells with brefeldin A, but was extremely sensitive to nocodazole treatment. Coexpression of Cx26-YFP and Cx32-CFP indicated a different intracellular distribution that was accentuated in the presence of brefeldin A, with the gap junctions in these cells constructed predominantly of Cx26-YFP. A site specific mutation in the first transmembrane domain that distinguished Cx32 from Cx26 (Cx32128L) resulted in the adoption of the trafficking properties of Cx26 as well as its unusual post-translational membrane integration characteristics. The results indicate that multiple intracellular connexin trafficking routes exist and provide a further mechanism for regulating the connexin composition of gap junctions and thus specificity in intercellular signalling.  相似文献   

19.
We present a new in vitro system for characterizing the binding and mobility of enhanced green fluorescent protein (EGFP)-labeled nuclear proteins by fluorescence recovery after photobleaching in digitonin-permeabilized cells. This assay reveals that SRm160, a splicing coactivator and component of the exon junction complex (EJC) involved in RNA export, has an adenosine triphosphate (ATP)-dependent mobility. Endogenous SRm160, lacking the EGFP moiety, could also be released from sites at splicing speckled domains by an ATP-dependent mechanism. A second EJC protein, RNPS1, also has an ATP-dependent mobility, but SRm300, a protein that binds to SRm160 and participates with it in RNA splicing, remains immobile after ATP supplementation. This finding suggests that SRm160-containing RNA export, but not splicing, complexes have an ATP-dependent mobility. We propose that RNA export complexes have an ATP-regulated mechanism for release from binding sites at splicing speckled domains. In vitro fluorescence recovery after photobleaching is a powerful tool for identifying cofactors required for nuclear binding and mobility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号