首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
We review the principles of linkage analysis of experimental genetic crosses and their application to Plasmodium falciparum. Three experimental genetic crosses have been performed using the human malaria parasite P. falciparum. Linkage analysis of the progeny of these crosses has been used to identify parasite genes important in phenotypes such as drug resistance, parasite growth and virulence, and transmission to mosquitoes. The construction and analysis of genetic maps has been used to characterise recombination rates across the parasite genome and to identify hotspots of recombination.  相似文献   

2.
Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity.  相似文献   

3.
Interpolated Markov models for eukaryotic gene finding.   总被引:21,自引:0,他引:21  
Computational gene finding research has emphasized the development of gene finders for bacterial and human DNA. This has left genome projects for some small eukaryotes without a system that addresses their needs. This paper reports on a new system, GlimmerM, that was developed to find genes in the malaria parasite Plasmodium falciparum. Because the gene density in P. falciparum is relatively high, the system design was based on a successful bacterial gene finder, Glimmer. The system was augmented with specially trained modules to find splice sites and was trained on all available data from the P. falciparum genome. Although a precise evaluation of its accuracy is impossible at this time, laboratory tests (using RT-PCR) on a small selection of predicted genes confirmed all of those predictions. With the rapid progress in sequencing the genome of P. falciparum, the availability of this new gene finder will greatly facilitate the annotation process.  相似文献   

4.
The human malaria parasite Plasmodium falciparum utilises a mechanism of antigenic variation to avoid the antibody response of its human host and thereby generates a long-term, persistent infection. This process predominantly results from systematic changes in expression of the primary erythrocyte surface antigen, a parasite-produced protein called PfEMP1 that is encoded by a repertoire of over 60 var genes in the P. falciparum genome. var genes exhibit extensive sequence diversity, both within a single parasite's genome as well as between different parasite isolates, and thus provide a large repertoire of antigenic determinants to be alternately displayed over the course of an infection. Whilst significant work has recently been published documenting the extreme level of diversity displayed by var genes found in natural parasite populations, little work has been done regarding the mechanisms that lead to sequence diversification and heterogeneity within var genes. In the course of producing transgenic lines from the original NF54 parasite isolate, we cloned and characterised a parasite line, termed E5, which is closely related to but distinct from 3D7, the parasite used for the P. falciparum genome nucleotide sequencing project. Analysis of the E5 var gene repertoire, as well as that of the surrounding rif and stevor multi-copy gene families, identified examples of frequent recombination events within these gene families, including an example of a duplicative transposition which indicates that recombination events play a significant role in the generation of diversity within the antigen encoding genes of P. falciparum.  相似文献   

5.
6.
Plasmodium falciparum is the causative agent for the most lethal form of human malaria, killing millions annually. Genetic analyses of P. falciparum have been relatively limited due to the lack of robust techniques to manipulate this parasite. Development of transfection technologies and whole genome analyses have helped in understanding the complex biology of this parasite. Even with this wealth of information functional genomics approaches are still very limited in P. falciparum due to the cumbersome and inefficient methods of genetic manipulation. This review focuses on a recently developed, highly efficient method for transposon-based mutagenesis and transgene expression in P. falciparum that will allow functional genomics studies to be performed proficiently on this deadly malaria parasite. By using a piggyBac-based transposition system, multiple random integrations have been obtained into the genome of the parasite. This technique could hence be employed to set up several biological screens in this lethal protozoan parasite that may lead to identification of novel drug targets and vaccine candidates.  相似文献   

7.
Reciprocal co‐evolving interactions between hosts and parasites are a primary source of strong selection that can promote rapid and often population‐ or genotype‐specific evolutionary change. These host–parasite interactions are also a major source of disease. Despite their importance, very little is known about the genomic basis of co‐evolving host–parasite interactions in natural populations, especially in animals. Here, we use gene expression and sequence evolution approaches to take critical steps towards characterizing the genomic basis of interactions between the freshwater snail Potamopyrgus antipodarum and its co‐evolving sterilizing trematode parasite, Microphallus sp., a textbook example of natural coevolution. We found that Microphallus‐infected P. antipodarum exhibit systematic downregulation of genes relative to uninfected P. antipodarum. The specific genes involved in parasite response differ markedly across lakes, consistent with a scenario where population‐level co‐evolution is leading to population‐specific host–parasite interactions and evolutionary trajectories. We also used an FST‐based approach to identify a set of loci that represent promising candidates for targets of parasite‐mediated selection across lakes as well as within each lake population. These results constitute the first genomic evidence for population‐specific responses to co‐evolving infection in the P. antipodarum‐Microphallus interaction and provide new insights into the genomic basis of co‐evolutionary interactions in nature.  相似文献   

8.
9.
ADF/cofilins (AC) are essential F- and G-actin binding proteins that modulate microfilament turnover. The genome of Plasmodium falciparum, the parasite causing malaria, contains two members of the AC family. Interestingly, P. falciparum ADF1 lacks the F-actin binding residues of the AC consensus. Reverse genetics in the rodent malaria model system suggest that ADF1 performs vital functions during the pathogenic red blood cell stages, whereas ADF2 is not present in these stages. We show that recombinant PfADF1 interacts with monomeric actin but does not bind to actin polymers. Although other AC proteins inhibit nucleotide exchange on monomeric actin, the Plasmodium ortholog stimulates nucleotide exchange. Thus, PfADF1 differs in its biochemical properties from previously known AC proteins and seems to promote turnover exclusively by interaction with actin monomers. These findings provide important insights into the low cytosolic abundance and unique turnover characteristics of actin polymers in parasites of the phylum Apicomplexa.  相似文献   

10.
Recent results indicate that association mapping in populations from applied plant breeding is a powerful tool to detect QTL which are of direct relevance for breeding. The focus of this study was to unravel the genetic architecture of six agronomic traits in sugar beet. To this end, we employed an association mapping approach, based on a very large population of 924 elite sugar beet lines from applied plant breeding, fingerprinted with 677 single nucleotide polymorphism (SNP) markers covering the entire genome. We show that in this population linkage disequilibrium decays within a short genetic distance and is sufficient for the detection of QTL with a large effect size. To increase the QTL detection power and the mapping resolution a much higher number of SNPs is required. We found that for QTL detection, the mixed model including only the kinship matrix performed best, even in the presence of a considerable population structure. In genome-wide scans, main effect QTL and epistatic QTL were detected for all six traits. Our full two-dimensional epistasis scan revealed that for complex traits there appear to be epistatic master regulators, loci which are involved in a large number of epistatic interactions throughout the genome.  相似文献   

11.
12.
Mu J  Seydel KB  Bates A  Su XZ 《Current Genomics》2010,11(4):279-286
With the completion and near completion of many malaria parasite genome-sequencing projects, efforts are now being directed to a better understanding of gene functions and to the discovery of vaccine and drug targets. Inter- and intraspecies comparisons of the parasite genomes will provide invaluable insights into parasite evolution, virulence, drug resistance, and immune invasion. Genome-wide searches for loci under various selection pressures may lead to discovery of genes conferring drug resistance or encoding for protective antigens. In addition, the Plasmodium falciparum genome sequence provides the basis for the development of various microarrays to monitor gene expression and to detect nucleotide substitution and deletion/amplification. Genome-wide profiling of the parasite proteome, chromatin modification, and nucleosome position also depend on availability of the parasite genome. In this brief review, we will highlight some recent advances and studies in characterizing gene function and related phenotype in P. falciparum that were made possible by the genome sequence, particularly the development of a genome-wide diversity map and various high-throughput genotyping methods for genome-wide association studies (GWAS).  相似文献   

13.
When selection is strong and beneficial alleles have a single origin, local reductions in genetic diversity are expected. However, when beneficial alleles have multiple origins or were segregating in the population prior to a change in selection regime, the impact on genetic diversity may be less clear. We describe an example of such a "soft" selective sweep in the malaria parasite Plasmodium falciparum that involves adaptive genome rearrangements. Amplification in copy number of genome regions containing the pfmdr1 gene on chromosome 5 confer resistance to mefloquine and spread rapidly in the 1990s. Using flanking microsatellite data and real-time polymerase chain reaction determination of copy number, we show that 5-15 independent amplification events have occurred in parasites on the Thailand/Burma border. The amplified genome regions (amplicons) range in size from 14.7 to 49 kb and contain 2-11 genes, with 2-4 copies arranged in tandem. To examine the impact of drug selection on flanking variation, we genotyped 48 microsatellites on chromosome 5 in 326 parasites from a single Thai location. Diversity was reduced in a 170- to 250-kb (10-15 cM) region of chromosomes containing multiple copies of pfmdr1, consistent with hitchhiking resulting from the rapid recent spread of selected chromosomes. However, diversity immediately flanking pfmdr1 is reduced by only 42% on chromosomes bearing multiple amplicons relative to chromosomes carrying a single copy. We highlight 2 features of these results: 1) All amplicon break points occur in monomeric A/T tracts (9-45 bp). Given the abundance of these tracts in P. falciparum, we expect that duplications will occur frequently at multiple genomic locations and have been underestimated as drivers of phenotypic evolution in this pathogen. 2) The signature left by the spread of amplified genome segments is broad, but results in only limited reduction in diversity. If such "soft" sweeps are common in nature, statistical methods based on diversity reduction may be inefficient at detecting evidence for selection in genome-wide marker screens. This may be particularly likely when mutation rate is high, as appears to be the case for gene duplications, and in pathogen populations where effective population sizes are typically very large.  相似文献   

14.
15.
In our previous papers, we demonstrated that the inclusion of epistatic interactions in marker models improved prediction for corn (Zea mays L.) grain quality traits. The utility of pre-selecting markers for epistatic models was not reported. In papers by other researchers, including epistatic effects in a model did not improve prediction efficacy for whole genome selection. The objectives of this study were therefore to evaluate the value of: (1) pre-selecting markers and interactions at different type 1 error levels to predict performance; (2) adding epistatic interactions to models including all markers, and (3) using marker-based models to predict performance of kernel weight (KWT), flowering date (FDT), and plant height (PHT). Data for KWT, FDT, PHT, and oil and protein concentrations were obtained for 500 S2 lines and their testcrosses from the crosses of Illinois high oil × Illinois low oil and Illinois high protein × Illinois low protein corn strains. Pre-selection using an epistatic model including both single-locus and two-locus interaction effects significant at the P = 0.05 level significantly increased prediction efficacy over selection including all markers and epistatic interactions. Adding all epistatic interactions to a model including all markers did not improve prediction. For most traits, prediction based on the P = 0.05 epistatic pre-selection model was nearly as effective as prediction based on phenotype, suggesting subsequent marker-based selection would be effective.  相似文献   

16.
The parasite Plasmodium falciparum is the main agent responsible for malaria. In this study, we exploited a recently published chemical library from GlaxoSmithKline (GSK) that had previously been confirmed to inhibit parasite growth of the wild type (3D7) and the multi-drug resistance (D2d) strains, in order to uncover the weak links in the proteome of the parasite. We predicted 293 proteins of P. falciparum, including the six out of the seven verified targets for P. falciparum malaria treatment, as targets of 4645 GSK active compounds. Furthermore, we prioritized druggable targets, based on a number of factors, such as essentiality for growth, lack of homology with human proteins, and availability of experimental data on ligand activity with a non-human homologue of a parasite protein. We have additionally prioritized predicted ligands based on their polypharmacology profile, with focus on validated essential proteins and the effect of their perturbations on the metabolic network of P. falciparum, as well as indication of drug resistance emergence. Finally, we predict potential off-target effects on the human host with associations to cancer, neurological and dermatological disorders, based on integration of available chemical-protein and protein-protein interaction data. Our work suggests that a large number of the P. falciparum proteome is potentially druggable and could therefore serve as novel drug targets in the fight against malaria. At the same time, prioritized compounds from the GSK library could serve as lead compounds to medicinal chemists for further optimization.  相似文献   

17.
The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand-receptor interactions. Some strains of P. falciparum are sensitive to neuraminidase treatment of the host erythrocyte and these parasites have been termed sialic acid-dependent as they utilize receptors containing sialic acid. In contrast, other strains can efficiently invade neuraminidase-treated erythrocytes and hence are sialic acid-independent. The molecular interactions that allow P. falciparum to differentially utilize receptors for merozoite invasion are not understood. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1, a member of this protein family, appears to be expressed in all parasite lines analysed but there are marked differences in the level of expression between different strains. We have used targeted gene disruption of the PfRh1 gene in P. falciparum to show that the encoded protein is required for sialic acid-dependent invasion of human erythrocytes. The DeltaPfRh1 parasites are able to invade normally; however, they utilize a pattern of ligand-receptor interactions that are more neuraminidase-resistant. Current data suggest a strategy based on the differential function of specific PfRh proteins has evolved to allow P. falciparum parasites to utilize alternative receptors on the erythrocyte surface for evasion of receptor polymorphisms and the host immune system.  相似文献   

18.
19.
Whole-genome comparisons are highly informative regarding genome evolution and can reveal the conservation of genome organization and gene content, gene regulatory elements, and presence of species-specific genes. Initial comparative genome analyses of the human malaria parasite Plasmodium falciparum and rodent malaria parasites (RMPs) revealed a core set of 4,500 Plasmodium orthologs located in the highly syntenic central regions of the chromosomes that sharply defined the boundaries of the variable subtelomeric regions. We used composite RMP contigs, based on partial DNA sequences of three RMPs, to generate a whole-genome synteny map of P. falciparum and the RMPs. The core regions of the 14 chromosomes of P. falciparum and the RMPs are organized in 36 synteny blocks, representing groups of genes that have been stably inherited since these malaria species diverged, but whose relative organization has altered as a result of a predicted minimum of 15 recombination events. P. falciparum-specific genes and gene families are found in the variable subtelomeric regions (575 genes), at synteny breakpoints (42 genes), and as intrasyntenic indels (126 genes). Of the 168 non-subtelomeric P. falciparum genes, including two newly discovered gene families, 68% are predicted to be exported to the surface of the blood stage parasite or infected erythrocyte. Chromosomal rearrangements are implicated in the generation and dispersal of P. falciparum-specific gene families, including one encoding receptor-associated protein kinases. The data show that both synteny breakpoints and intrasyntenic indels can be foci for species-specific genes with a predicted role in host-parasite interactions and suggest that, besides rearrangements in the subtelomeric regions, chromosomal rearrangements may also be involved in the generation of species-specific gene families. A majority of these genes are expressed in blood stages, suggesting that the vertebrate host exerts a greater selective pressure than the mosquito vector, resulting in the acquisition of diversity.  相似文献   

20.
Although recent advances in genome biology have dramatically increased our understanding of the contribution of gene interactions to the development of complex phenotypes, we still lack general agreement on the process and mechanisms responsible for the evolution of epistatic systems. Even if genes in a species are indeed integrated into coadapted complexes of interacting components, simple additive evolution may eventually result in epistatic differentiation of populations. Consequently, the prevalence of epistatic gene action does not tell us anything about the role of epistatic selection in the history of population divergence. To elucidate the contribution of epistatic selection in the evolution of coadaptation, we investigate the fixation process of two mutations that interact synergistically to enhance fitness. We show by diffusion analysis and simulations that epistatic selection on cosegregating variants does not by itself promote the evolution of epistatic systems; rather, accumulation of neutral mutations may play a crucial role, creating an appropriate genetic milieu for adaptive evolution in the future generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号