首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Moltedo B  Li W  Yount JS  Moran TM 《PLoS pathogens》2011,7(11):e1002345
Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103(+) DCs and CD11b(high) DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103(+) DCs allow the virus to replicate to significantly higher levels than do the CD11b(high) DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11b(high) DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103(+) DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11b(high) DCs. The attenuated IFNAR signaling by CD103(+) DCs correlates with their described superior antigen presentation capacity for na?ve CD8(+) T cells when compared to CD11b(high) DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The "interferon-resistant" CD103(+) DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination.  相似文献   

4.
Both antibodies and T cells contribute to immunity against influenza virus infection. However, the generation of strong Th1 immunity is crucial for viral clearance. Interestingly, we found that human dendritic cells (DCs) infected with influenza A virus have lower allospecific Th1-cell stimulatory abilities than DCs activated by other stimuli, such as lipopolysaccharide and Newcastle disease virus infection. This weak stimulatory activity correlates with a suboptimal maturation of the DCs following infection with influenza A virus. We next investigated whether the influenza A virus NS1 protein could be responsible for the low levels of DC maturation after influenza virus infection. The NS1 protein is an important virulence factor associated with the suppression of innate immunity via the inhibition of type I interferon (IFN) production in infected cells. Using recombinant influenza and Newcastle disease viruses, with or without the NS1 gene from influenza virus, we found that the induction of a genetic program underlying DC maturation, migration, and T-cell stimulatory activity is specifically suppressed by the expression of the NS1 protein. Among the genes affected by NS1 are those coding for macrophage inflammatory protein 1beta, interleukin-12 p35 (IL-12 p35), IL-23 p19, RANTES, IL-8, IFN-alpha/beta, and CCR7. These results indicate that the influenza A virus NS1 protein is a bifunctional viral immunosuppressor which inhibits innate immunity by preventing type I IFN release and inhibits adaptive immunity by attenuating human DC maturation and the capacity of DCs to induce T-cell responses. Our observations also support the potential use of NS1 mutant influenza viruses as live attenuated influenza virus vaccines.  相似文献   

5.
Dendritic cells (DCs) act as a portal for virus invasion and as the most potent antigen-presenting cells in antiviral host defense. Human immunodeficiency virus (HIV)-1 has served as the paradigm for virus interaction with DCs. HIV-1 infection of DCs via its primary CD4 receptor and secondary chemokine receptors leads to full virus replication (cis infection), whereas binding to C-type lectin receptors results both in cis replication, as well as transfer and replication of virus in CD4(pos) T cells (trans infection). DCs respond to this invasion by processing viral proteins through MHC class I and II pathways and undergoing a maturation that enhances their presentation of antigen to T cells for induction of adaptive antiviral immunity. HIV-1 and other viruses have evolved mechanisms to subvert this immune function. Engineering of DCs with various forms of viral immunogens and co-treatment with cytokines and chemokines is being used as an immunotherapy for HIV-1 and other viral infections.  相似文献   

6.
7.
The influenza A virus is a causative agent of influenza, which infects human cells and uses host factors to accomplish viral genome replication as part of its life cycle. The nucleoprotein (NP) and PB2 of the influenza virus associate with importin α1 to gain access to the host nucleus through a ternary import complex. Killer cell-mediated cytotoxicity is the primary mechanism of eliminating the influenza virus. Here, we showed that lymphokine-activated killer cells participated in the elimination of the influenza virus. Granzyme (Gzm) K inhibition elevated viral replication in vitro and aggravated viral infection in vivo. We identified that importin α1 and its transport partner protein importin β are physiological substrates of GzmK. Proteolysis of these two substrates wrecked their association to generate the importin α1/β dimer and disrupted transportation of viral NP to the nucleus, leading to inhibition of influenza virus replication.  相似文献   

8.
9.
Invariant natural killer T (iNKT) cells are non-conventional lipid-reactive αβ T lymphocytes that play a key role in host responses during viral infections, in particular through the swift production of cytokines. Their beneficial role during experimental influenza A virus (IAV) infection has recently been proposed, although the mechanisms involved remain elusive. Here we show that during in vivo IAV infection, mouse pulmonary iNKT cells produce IFN-γ and IL-22, a Th17-related cytokine critical in mucosal immunity. Although permissive to viral replication, IL-22 production by iNKT cells is not due to IAV infection per se of these cells but is indirectly mediated by IAV-infected dendritic cells (DCs). We show that activation of the viral RNA sensors TLR7 and RIG-I in DCs is important for triggering IL-22 secretion by iNKT cells, whereas the NOD-like receptors NOD2 and NLRP3 are dispensable. Invariant NKT cells respond to IL-1β and IL-23 provided by infected DCs independently of the CD1d molecule to release IL-22. In vitro, IL-22 protects IAV-infected airway epithelial cells against mortality but has no role on viral replication. Finally, during early IAV infection, IL-22 plays a positive role in the control of lung epithelial damages. Overall, IAV infection of DCs activates iNKT cells, providing a rapid source of IL-22 that might be beneficial to preserve the lung epithelium integrity.  相似文献   

10.
11.
Immature dendritic cells (DCs), unlike mature DCs, require the viral determinant nef to drive immunodeficiency virus (SIV and HIV) replication in coculture with CD4(+) T cells. Since immature DCs may capture and get infected by virus during mucosal transmission, we hypothesized that Nef associated with the virus or produced during early replication might modulate DCs to augment virus dissemination. Adenovirus vectors expressing nef were used to introduce nef into DCs in the absence of other immunodeficiency virus determinants to examine Nef-induced changes that might activate immature DCs to acquire properties of mature DCs and drive virus replication. Nef expression by immature human and macaque DCs triggered IL-6, IL-12, TNF-alpha, CXCL8, CCL3, and CCL4 release, but without up-regulating costimulatory and other molecules characteristic of mature DCs. Coincident with this, nef-expressing immature DCs stimulated stronger autologous CD4(+) T cell responses. Both SIV and HIV nef-expressing DCs complemented defective SIVmac239 delta nef, driving replication in autologous immature DC-T cell cultures. In contrast, if DCs were activated after capturing delta nef, virus growth was not exacerbated. This highlights one way in which nef-defective virus-bearing immature DCs that mature while migrating to draining lymph nodes could induce stronger immune responses in the absence of overwhelming productive infection (unlike nef-containing wild-type virus). Therefore, Nef expressed in immature DCs signals a distinct activation program that promotes virus replication and T cell recruitment but without complete DC maturation, thereby lessening the likelihood that wild-type virus-infected immature DCs would activate virus-specific immunity, but facilitating virus dissemination.  相似文献   

12.
13.
Known therapies for influenza A virus infection are complicated by the frequent emergence of resistance. A therapeutic strategy that may escape viral resistance is targeting host cellular mechanisms involved in viral replication and pathogenesis. The endoplasmic reticulum (ER) stress response, also known as the unfolded protein response (UPR), is a primitive, evolutionary conserved molecular signaling cascade that has been implicated in multiple biological phenomena including innate immunity and the pathogenesis of certain viral infections. We investigated the effect of influenza A viral infection on ER stress pathways in lung epithelial cells. Influenza A virus induced ER stress in a pathway-specific manner. We showed that the virus activates the IRE1 pathway with little or no concomitant activation of the PERK and the ATF6 pathways. When we examined the effects of modulating the ER stress response on the virus, we found that the molecular chaperone tauroursodeoxycholic acid (TUDCA) significantly inhibits influenza A viral replication. In addition, a specific inhibitor of the IRE1 pathway also blocked viral replication. Our findings constitute the first evidence that ER stress plays a role in the pathogenesis of influenza A viral infection. Decreasing viral replication by modulating the host ER stress response is a novel strategy that has important therapeutic implications.  相似文献   

14.
The M2 ion channel proteins of influenza A and B viruses are essential to viral replication. The two ion channels share a common motif, HXXXW, that is responsible for proton selectivity and activation. The ion channel for the influenza A virus, but not influenza B virus, is inhibited by the antiviral drug amantadine and amantadine-resistant escape mutants form in treated influenza A patients. The studies reviewed suggest that an antiviral compound directed against the conserved motif would be more useful than amantadine in inhibiting viral replication.  相似文献   

15.
Influenza A virus causes annual epidemics and occasional pandemics in humans. Here, we investigated four members of the fibroblast growth factor receptor (FGFR) family; FGFR1 to 4, and examined their expression patterns in human lung epithelial cells A549 with influenza A virus infection. We identified a functional role of FGFR1 in influenza A/Puerto Rico/8/1934 (PR8) and A/Anhui/01/2005 (H5N1) virus replication. Our results showed that FGFR1 silencing by siRNA interference promoted influenza A/PR8 and H5N1 virus replication in A549 cells, while lentivirus-mediated exogenous FGFR1 expression significantly suppressed influenza A virus replication; however, FGFR4 did not have the same effects. Moreover, FGFR1 phosphorylation levels were downregulated in A549 cells by influenza A virus infection, while the repression of FGFR1 kinase using PD173074, a potent and selective FGFR1 inhibitor, could enhance virus replication. Furthermore, we found that FGFR1 inhibits influenza virus internalization, but not binding, during viral entry. These results suggested that FGFR1 specifically antagonizes influenza A virus replication, probably by blocking viral entry.  相似文献   

16.
TLR signaling leads to dendritic cell (DC) maturation and immunity to diverse pathogens. The stimulation of TLRs by conserved viral structures is the only described mechanism leading to DC maturation after a virus infection. In this report, we demonstrate that mouse myeloid DCs mature normally after in vivo and in vitro infection with Sendai virus (SeV) in the absence of TLR3, 7, 8, or 9 signaling. DC maturation by SeV requires virus replication not necessary for TLR-mediated triggering. Moreover, DCs deficient in TLR signaling efficiently prime for Th1 immunity after infection with influenza or SeV, generating IFN-gamma-producing T cells, CTLs and antiviral Abs. We have previously demonstrated that SeV induces DC maturation independently of the presence of type I IFN, which has been reported to mature DCs in a TLR-independent manner. The data presented here provide evidence for the existence of a novel intracellular pathway independent of TLR-mediated signaling responsible for live virus triggering of DC maturation and demonstrate its critical role in the onset of antiviral immunity. The revelation of this pathway should stimulate invigorating research into the mechanism for virus-induced DC maturation and immunity.  相似文献   

17.
The murine Mx1 protein is an interferon-inducible protein which confers selective resistance to influenza virus infection both in vitro and in vivo. The precise mechanism by which the murine Mx1 specifically inhibits replication of influenza virus is not known. Previously, sensitive replication systems for influenza virus ribonucleoprotein, in which a synthetic influenza virus-like ribonucleoprotein is replicated and transcribed by influenza virus proteins provided in trans, have been developed. With these systems, the antiviral activity of the murine Mx1 protein was examined. It was found that continued expression of influenza polymerase polypeptides via vaccinia virus vectors can titrate out the inhibitory action of the murine Mx1 protein. This titration of inhibitory activity also occurs when the viral PB2 protein alone is overexpressed, suggesting that an antiviral target for the murine Mx1 polypeptide is the viral PB2 protein.  相似文献   

18.
《Autophagy》2013,9(3):321-328
Autophagy is involved in the replication of viruses, especially those that perform RNA assembly on the surface of cytoplasmic membrane in host cells. However, little is known about the regulatory role of autophagy in influenza A virus replication. Using fluorescence and electron microscopy, we observed that autophagosomes can be induced and identified upon influenza A virus infection. The virus increased the amount of the autophagosome marker protein microtubule-associated protein light chain 3-II (LC3-II) and enhanced autophagic flux. When autophagy was pharmacologically inhibited by either 3-methylademine or wortmannin, the titers of influenza A virus were remarkably decreased. Viral reduction via autophagy inhibition was further confirmed by RNA interference, through which two different proteins required for autophagy were depleted. Noticeably, the compounds utilized had no marked effect on virus entry or cell viability, either of which might limit viral replication. Furthermore, alteration of cellular autophagy via pharmacological reagents or RNA interference impaired viral protein accumulation. Taken together, these findings indicate that autophagy is actively involved in influenza A virus replication.  相似文献   

19.
Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.  相似文献   

20.
We investigated the effect of IL-10 on replication of primary CXCR4-dependent (X4) HIV-1 strains by monocyte-derived dendritic cells (DCs) and macrophages (M Phis). M Phis efficiently replicated CXCR4-dependent HIV-1 (X4 HIV-1) strains NDK and VN44, whereas low levels of p24 were detected in supernatants of infected DCs. IL-10 significantly increased X4 HIV-1 replication by DCs but blocked viral production by M Phis as determined by p24 levels and semiquantitative nested PCR. IL-10 up-regulated CXCR4 mRNA and protein expression on DCs and M Phis, suggesting that IL-10 enhances virus entry in DCs but blocks an entry and/or postentry step in M Phis. The effect of IL-10 on the ability of DCs and M Phis to transmit virus to autologous CD4(+) T lymphocytes was investigated in coculture experiments. DCs exhibited a greater ability than did M Phis to transmit a vigorous infection to CD4(+) T cells despite their very low replication capacity. IL-10 had no effect on HIV-1 replication in DC:T cell cocultures but markedly decreased viral production in M Phi:T cell cocultures. These results demonstrate that IL-10 has opposite effects on the replication of primary X4 HIV-1 strains by DCs and M Phis. IL-10 increases X4-HIV-1 replication in DCs but does not alter their capacity to transmit virus to CD4(+) T lymphocytes. These findings suggest that increased levels of IL-10 observed in HIV-1-infected patients with disease progression may favor the replication of X4 HIV-1 strains in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号