首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many adult and diapausing pupal insects exchange respiratory gases discontinuously in a three-phase discontinuous gas exchange cycle (DGC). We summarize the known biophysical characteristics of the DGC and describe current research on the role of convection and diffusion in the DGC, emphasizing control of respiratory water loss. We summarize the main theories for the evolutionary genesis (or, alternatively, nonadaptive genesis) of the DGC: reduction in respiratory water loss (the hygric hypothesis), optimizing gas exchange in hypoxic and hypercapnic environments (the chthonic hypothesis), the hybrid of these two (the chthonic-hygric hypothesis), reducing the toxic properties of oxygen (the oxidative damage hypothesis), the outcome of interactions between O(2) and CO(2) control set points (the emergent property hypothesis), and protection against parasitic invaders (the strolling arthropods hypothesis). We describe specific techniques that are being employed to measure respiratory water loss in the presence or absence of the DGC in an attempt to test the hygric hypothesis, such as the hyperoxic switch and H(2)O/CO(2) regression, and summarize specific areas of the field that are likely to be profitable directions for future research.  相似文献   

2.
Flightless, diurnal tenebrionid beetles are commonly found in deserts. They possess a curious morphological adaptation, the subelytral cavity (an air space beneath the fused elytra) the function of which is not completely understood. In the tenebrionid beetle Eleodes obscura, we measured abdominal movements within the subelytral cavity, and the activity of the pygidial cleft (which seals or unseals the subelytral cavity), simultaneously with total CO2 release rate and water loss rate. First, we found that E. obscura has the lowest cuticular permeability measured in flow-through respirometry in an insect (0.90 microg H2O cm(-2) Torr(-1) h(-1)). Second, it does not exhibit a discontinuous gas exchange cycle. Third, we describe the temporal coupling between gas exchange, water loss, subelytral space volume, and the capacity of the subelytral space to exchange gases with its surroundings as indicated by pygidial cleft state. Fourth, we suggest possible mechanisms that may reduce respiratory water loss rates in E. obscura. Finally, we suggest that E. obscura cannot exchange respiratory gases discontinuously because of a morphological constraint (small tracheal or spiracular conductance). This "conductance constraint hypothesis" may help to explain the otherwise puzzling phylogenetic patterns of continuous vs. discontinuous gas exchange observed in tracheate arthropods.  相似文献   

3.
Metabolic rate and respiratory gas exchange patterns vary significantly both between and within species, even after a number of biotic and abiotic factors are taken into account. This suggests that such variation is of evolutionary importance, but the life history implications of this variation remain relatively poorly characterized. In the present study, we examine the effect of metabolic variation on starvation and desiccation resistance in the speckled cockroach Nauphoeta cinerea. We also compare the starvation and desiccation resistance of individuals that exchange respiratory gases continuously with those that breathe discontinuously. We show that metabolic rate has no effect on survival during food and water restriction, but cockroaches exhibiting discontinuous gas exchange cycles (DGCs) live longer than those that do not and those provisioned with water lived longer than those that were not. This finding represents the first demonstration that DGCs confer a fitness benefit, and supports the oldest hypothesis for the evolution of DGCs (which suggests that DGCs arose or are maintained to reduce respiratory water loss) as we also reveal reduced water loss (both respiratory and total) in cockroaches exhibiting discontinuous gas exchange.  相似文献   

4.
The function and mechanism underlying discontinuous gas exchange in terrestrial arthropods continues to be debated. Three adaptive hypotheses have been proposed to explain the evolutionary origin or maintenance of discontinuous gas exchange cycles (DGCs), which may have evolved to reduce respiratory water loss, facilitate gas exchange in high CO2 and low O2 micro-environments, or to ameliorate potential damage as a result of oversupply of O2. None of these hypotheses have unequivocal support, and several non-adaptive hypotheses have also been proposed. In the present study, we reared cockroaches Nauphoeta cinerea in selected levels of O2 throughout development, and examined how this affected growth rate, tracheal morphology and patterns of gas exchange. O2 level in the rearing environment caused significant changes in tracheal morphology and the exhibition of DGCs, but the direction of these effects was inconsistent with all three adaptive hypotheses: water loss was not associated with DGC length, cockroaches grew fastest in hyperoxia, and DGCs exhibited by cockroaches reared in normoxia were shorter than those exhibited by cockroaches reared in hypoxia or hyperoxia.  相似文献   

5.
昆虫不连续气体交换   总被引:3,自引:1,他引:2  
姚青  沈佐锐 《昆虫学报》2005,48(2):273-278
许多昆虫呼吸时气体交换是不连续的循环式进行的。根据气门开闭,一个典型的不连续气体交换循环(discontinuous gas exchangecycle, DGC)可以明显分为3个阶段: 关闭阶段,极少或没有气体交换;颤动阶段,气门迅速微开和关闭,O2进入气管,少量CO2释放;最后是开放阶段,大量的CO2释放。该文综述了DGC特征及昆虫活动、温度、体重对DGC的影响,并讨论了DGC与呼吸失水、缺氧或高CO2浓度环境有关的进化适应意义。  相似文献   

6.
Some insects display an intermittent pattern of gas exchange while at rest, often going hours between breaths. These discontinuous gas exchange cycles (DGCs) are known to have evolved independently within five insect orders, but their possible adaptive benefit and evolutionary origin remain an enigma. Current research is primarily concerned with testing three adaptive hypotheses: that DGCs originally evolved or are currently maintained to (1) limit respiratory water loss, (2) enhance gas exchange in subterranean environments, or (3) limit oxidative damage. These adaptive explanations fail to unite a range of apparently contradictory observations regarding the insects that display DGCs and the conditions under which they occur. Here we argue that DGCs are explained by circadian, developmental, or artificially induced reductions in brain activity. We conclude that this pattern results from the thoracic and abdominal ganglia regulating ventilation in the absence of control from higher neural centers, and it is indicative of a sleeplike state.  相似文献   

7.
The regulation of insect respiratory gas exchange has long been an area of interest. In particular, the reason why insects from at least five orders exhibit patterns of gas exchange that include regular periods of spiracular closure has been the source of much controversy. Three adaptive hypotheses propose that these discontinuous gas‐exchange cycles (DGCs) evolved to either limit water loss across respiratory surfaces, facilitate gas exchange in underground environments or to limit oxidative damage. It is possible that DGCs evolved independently multiple times and for different reasons, but for DGCs to be a plausible target for natural selection, they must be heritable and confer a fitness benefit. In a previous study of cockroaches Nauphoeta cinerea, we demonstrated that DGCs are repeatable and extend survival under food and water restriction. Here, we show for the first time that DGCs are heritable, suggesting that they are a plausible target for natural selection.  相似文献   

8.
Gas exchange patterns of adult male Pterostichus niger Schaller after hydration (i.e. given access to food and water) are compared in dry air [5–7% relative humidity (RH)] and moist air (90–97% RH) by means of flow‐through CO2 respirometry combined with infrared probe actography. Of thirty beetles examined, slightly more than 50% showed continuous gas exchange and are not considered further. Of the remaining beetles, the majority (approximately 71%) display a pattern of cyclic gas exchange in both dry and moist air (i.e. CO2 gas is released in bursts, with a low level of CO2 release during the interburst periods). A minority of the beetles (four out of 30) are found to exhibit discontinuous gas exchange in both dry and moist air; this is characterized by three clearly separated states of the spiracles: closed (C), flutter (F) and open (O) phases. The pattern of cyclic gas exchange is associated with weak abdominal pulsations. After switching from moist to dry air, a small modulation of the discontinuous gas exchange cycles (maximum mean CO2 production rate) occurs, providing no clear support for the hygric theory of discontinuous gas exchange in this species (i.e. that it serves to restrict respiratory water loss).  相似文献   

9.
Effects of Neem EC (The Indian Neem Tree CompanyTM, 1% azadirachtin) on gas exchange cycles, tracheal ventilation, and water loss in diapausing pupae of the large white butterfly, Pieris brassicae L. (Lepidoptera: Pieridae), were studied using a constant volume respirometer combined with an infrared probe actograph. The non‐treated pupae displayed discontinuous gas exchange cycles (DGC) with a trend coinciding with the bursts of carbon dioxide (CO2) release, active tracheal ventilation, and the heartbeat periods. Two independent forms of tracheal ventilation were observed, relatively vigorous abdominal shaking movements and weak abdominal pulsations. The ability to respond to mechanical excitation with abdominal movements was entirely lost on the 2nd day after treatments with Neem EC, and also a reduced tendency to use a DGC was observed. During 2–3 days after treatments, the DGCs and gas exchange microcycles were entirely lost, as was active ventilation. Before treatments, body mass loss, that is, water loss, was 0.6–0.9 mg g?1 day?1. After the treatments, water loss increased to 3–5 mg g?1 day?1. The pupae remained alive for 10–15 days after the treatments and died after having lost about 50% of their initial body mass. The absence of heartbeats measured during at least 4–5 h was the main criterion for ascertaining death of pupae. The results suggested that respiratory failures, that is, the loss of cyclic gas exchange, evoked by Neem EC were the primary cause of lethal desiccation. Thus, the hypothesis that the cyclic gas exchange is an adaptation for restricting water losses in insects was supported.  相似文献   

10.
The discontinuous gas exchange cycle (DGC) is a breathing pattern displayed by many insects, characterized by periodic breath-holding and intermittently low tracheal O(2) levels. It has been hypothesized that the adaptive value of DGCs is to reduce oxidative damage, with low tracheal O(2) partial pressures (PO(2) ≈ 2-5 kPa) occurring to reduce the production of oxygen free radicals. If this is so, insects displaying DGCs should continue to actively defend a low tracheal PO(2) even when breathing higher than atmospheric levels of oxygen (hyperoxia). This behaviour has been observed in moth pupae exposed to ambient PO(2) up to 50 kPa. To test this observation in adult insects, we implanted fibre-optic oxygen optodes within the tracheal systems of adult migratory locusts Locusta migratoria exposed to normoxia, hypoxia and hyperoxia. In normoxic and hypoxic atmospheres, the minimum tracheal PO(2) that occurred during DGCs varied between 3.4 and 1.2 kPa. In hyperoxia up to 40.5 kPa, the minimum tracheal PO(2) achieved during a DGC exceeded 30 kPa, increasing with ambient levels. These results are consistent with a respiratory control mechanism that functions to satisfy O(2) requirements by maintaining PO(2) above a critical level, not defend against high levels of O(2).  相似文献   

11.
Discontinuous gas exchange cycles (DGCs), active muscular ventilation, microcycles of repetitive openings, and heartbeats of diapausing adult Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), were studied at low temperatures (0, 5, and 10 °C) using an electrolytic respirometer combined with an infrared actograph. The DGC of the adult constriction-flutter-open type was the main respiration mode in fully quiescent beetles at temperatures from 5 to 10 °C. The CO2 bursts were actively ventilated at temperatures above 5 °C. During the flutter period, a series of microcycles appeared, but no muscular contractions associated with the microcycles were detected. We identified this respiration mode as discontinuous suction ventilation.
The hydration condition of the beetles did not influence the frequency of the gas exchange cycles, but dehydrated beetles showed significantly longer flutter periods and shorter ventilation periods than hydrated beetles. The heartbeat frequencies were influenced by both temperature and hydration status.
We conclude from the results that DGCs are used at rest in adult L. decemlineata under various environmental conditions and also at low temperatures. Our results showed that DGCs are the main respiration mode of resting adult Colorado potato beetle irrespective of its hydration state and temperature. Our method resolves O2 uptake and subsequent CO2 release in flutter and ventilation periods and shows that diffusion is replaced by convection to reduce water loss in adult beetles.  相似文献   

12.
We compared the precision, bias and accuracy of two techniques that were recently proposed to estimate the contributions of cuticular and respiratory water loss to total water loss in insects. We performed measurements of VCO2 and VH2O in normoxia, hyperoxia and anoxia using flow through respirometry on single individuals of the highly variable cockroach Perisphaeria sp. to compare estimates of cuticular and respiratory water loss (CWL and RWL) obtained by the VH2O-VCO2 y-intercept method with those obtained by the hyperoxic switch method. Precision was determined by assessing the repeatability of values obtained whereas bias was assessed by comparing the methods' results to each other and to values for other species found in the literature. We found that CWL was highly repeatable by both methods (R0.88) and resulted in similar values to measures of CWL determined during the closed-phase of discontinuous gas exchange (DGE). Repeatability of RWL was much lower (R=0.40) and significant only in the case of the hyperoxic method. RWL derived from the hyperoxic method is higher (by 0.044 micromol min(-1)) than that obtained from the method traditionally used for measuring water loss during the closed-phase of DGE, suggesting that in the past RWL may have been underestimated. The very low cuticular permeability of this species (3.88 microg cm(-2) h(-1) Torr(-1)) is reasonable given the seasonally hot and dry habitat where it lives. We also tested the hygric hypothesis proposed to account for the evolution of discontinuous gas exchange cycles and found no effect of respiratory pattern on RWL, although the ratio of mean VH2O to VCO2 was higher for continuous patterns compared with discontinuous ones.  相似文献   

13.
This study measured the respiratory patterns in the tenebrionid beetle, Onymacris multistriata, using flow-through respirometry to measure carbon dioxide emission from the mesothoracic spiracles separately and simultaneously with that from around the elytral case. 96% of the total CO(2) emitted was via the mesothoracic spiracles. These spiracles used a discontinuous gas exchange cycle similar to that measured from other tenebrionid beetles. Although the circadian rhythm of the beetles resulted in changes to the period durations and cycle frequencies in the discontinuous gas exchange cycles, the mesothoracic spiracle remained the major site for gas exchange. Thus the subelytral cavity plays a different role in respiration other than the elimination of CO(2) build-up. It is expected that other arid dwelling flightless beetles will also be shown to use the mesothoracic spiracle as the major route for CO(2) emission.  相似文献   

14.
Spiracles and the tracheal system of insects allow effective delivery of respiratory gases. During development, holometabolous insects encounter large changes in the functional morphology of gas exchange structures. To investigate changes in respiratory patterns during development, CO2-release was measured in larvae, pre-pupae and pupae of Samia cynthia (Lepidoptera, Saturniidae). Gas exchange patterns showed great variability. Caterpillars had high metabolic rates and released carbon dioxide continuously. Pre-pupae and pupae showed typical discontinuous gas exchange cycles (DGC) at reduced metabolic rates. Changes in gas exchange patterns can partly be explained with low metabolic rates during pupation. Sequential blocking of spiracles in pre-pupae and pupae reduced spiracle conductance with tracheal conductance remaining unaffected. Analysis of gas exchange patterns indicates that caterpillars and pre-pupae use more than 14 spiracles simultaneously while pupae only use 8 to 10 spiracles. Total conductance is not a simple multiple of single spiracles, but may be gradually adaptable to gas exchange demands. Surprisingly, moth pupae showed a DGC if all except one spiracle were blocked. The huge conductance of single spiracles is discussed as a pre-adaptation to high metabolic demands at the beginning and the end of the pupal as well as in the adult stage.  相似文献   

15.
Discontinuous gas exchange cycles are demonstrated in Omorgus radula (Erichson) (Coleoptera, Trogidae) for the first time, thus extending evidence for such cycles to another family of beetles. The closed, flutter and open phases of the cycle were clearly distinguishable in this species, and the duration of these phases was 221 ± 28, 1403 ± 148 and 755 ± 43 s (mean ± SE), respectively. No evidence for significant intraspecific mass scaling of VCO2 or any of the components of the cycle was found. Although the prolonged F‐phase recorded here is unusual for many insects, it has previously been found in other scarabaeoid beetles, especially those from xeric environments. It has been suggested that such modulation of the discontinuous gas exchange cycle may result in a reduced VCO2 and, consequently, reduced water loss. In O. radula VCO2 (15.25 ± 1.49 μl/h) was considerably lower than that predicted from its body mass (0.207 ± 0.006 g). However, the small relative contribution of respiratory transpiration (6.5%) to total water loss indicated that reduced VCO2 has little to do with water economy. Rather, it may be a consequence of generally low activity levels of these beetles. The low respiratory water loss, but distinct subterranean component in the adult life of O. radula, lend some credence to the hypothesis suggesting that regular use of subterranean habitats might have been responsible for the evolution of discontinuous gas exchange cycles. However, non‐adaptive hypotheses can still not be discounted.  相似文献   

16.
Abstract In this study we show a link between the respiratory method and state of hydration in an arid dwelling tenebrionid beetle ( Pimelia grandis ). Dehydrated beetles use discontinuous gas exchange cycles with a flutter period consisting of several discrete bursts of CO2 release, whereas beetles given access to food and water showed a form of continuous CO2 release. These data give support to the respiratory water conservation hypothesis for the discontinuous gas exchange cycle.  相似文献   

17.
The discontinuous gas exchange cycle (DGC) was described in the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae) for the first time. Also, the effect of the DGC on water loss was investigated. The CO(2) emission pattern in both insecticide resistant and susceptible B. germanica varied with temperature. At 10, 15, and 20 degrees C the pattern was discontinuous. Cycle frequency increased at 25 and 30 degrees C, and at 35 degrees C the pattern became cyclic. In most DGCs, there was no clear distinction between the closed and flutter phases in both strains thus data for these phases were combined and analyzed as the interburst phase. The probability that B. germanica would breath discontinuously varied with temperature. Most cockroaches (62.8%) displayed DGCs at 10 degrees C, therefore measurement of metabolic rate and water loss was carried out at this temperature. Using repeated measures of analysis of variance, the interburst and burst V(.)(CO(2))(ml h(-1)) were not significantly different between the two strains. The variability in CO(2) emission during the interburst and burst phases over time was not significantly different from cycle to cycle or between strains. Overall metabolic rate during the entire recording was not significantly different between both strains. There was a significant difference in the duration of the interburst and burst phases between the strains. The susceptible strain had significantly longer interburst and burst phase durations during a complete DGC than the resistant strain. The interburst and burst phase durations were 5.01+/-0.19 and 6.21+/-0.13 min, respectively, for the resistant strain, whereas the durations were 7.16+/-0.37 and 6.73+/-0.17 min, respectively, for the susceptible strain. This resulted in a DGC of significantly longer duration (13.89+/-0.44 min) in the susceptible strain compared with the resistant strain (11.23+/-0.26 min). The duration of the interburst phase was significantly different from the open phase duration in the resistant strain such that during a single DGC lasting approximately 11.23 min, 43.5% consisted of the interburst phase while the burst phase made up 56.5% of the cycle. The cuticular permeability at 10 degrees C and 0% RH was 2.26 microg cm(-2) h(-1) mmHg(-1) for the resistant strain and 3.42 microg cm(-2) h(-1) mmHg(-1) for the susceptible strain. In both strains, cuticular transpiration accounted for approximately 95% of total water loss. The significantly longer duration of the interburst phase of the susceptible strain was not important in reducing water loss.  相似文献   

18.
The large pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae), is the most important insect pest of young coniferous plants. The implementation of new control methods requires not only a profound knowledge of the ecology and behaviour of the pest, but particularly of its physiology. Standard metabolic rate (SMR) and discontinuous gas exchange cycles (DGCs) were recorded in parallel with abdominal ventilation movements in adults of H. abietis using a differential electrolytic respirometer‐actograph. Quiescent weevils displayed DGCs of the constriction, flutter, and ventilation phases of the CFV type, while bursts of carbon dioxide were always accompanied by abdominal pumping movements, i.e., muscular ventilation in the closed subelytral cavity (SEC). In some beetles the C phase was absent and thus (C)FV cycles were recorded. In addition, at the beginning and often at the end of a burst, the SEC was rhythmically opened and closed by movements of the last abdominal segments. Continuous pumping movements and an absence of DGCs were signs of stress imposed by handling or by a new environment, even if the beetle was not moving. All individuals showed clear DGCs after recovering from handling and apparatus stress lasting 2–3 h. The results show that in the monitoring of DGCs, it is essential to determine whether they are of the constriction, flutter, and open phases (CFO), or the CFV subtype of the constriction, flutter, and burst (CFB) cycles. Use of our simple closed‐system respirometer enables non‐invasive simultaneous recording of SMR, oxygen uptake, DGCs, and active ventilation in H. abietis and other beetles. The topical application of adult H. abietis with sublethal doses of a botanical insecticide, NeemAzal T/S, caused essential respiratory failures: cyclic gas exchange was lost and irregular pumping movements appeared. In the treated beetles normal DGCs did not resume.  相似文献   

19.
F. D. Duncan  M. J. Byrne 《Oecologia》2000,122(4):452-458
This study correlates a distinctive pattern of external gas exchange, referred to as the discontinuous gas exchange cycle (DGC), observed in the laboratory, with habitat associations of five species of telecoprid dung beetles. The beetles were chosen from a variety of habitats that would be expected to present different amounts of water stress. All five species exhibited DGC. Sisyphus fasciculatus has been recorded only in woodland areas, and does not have strict spiracular control during its DGC. Anachalcos convexus and Scarabaeus rusticus are associated with open mesic habitats. Both species exhibit a distinct DGC, previously found in some other insect species, but intermediate within this study group. Sc. flavicornis and Circellium bacchus are typically found in arid regions, and have the most unusual form of DGC, with spiracular fluttering during the burst phase. These results support the hypothesis that spiracular fluttering reduces respiratory water loss. From this study we conclude that the DGC is an ancestral adaptation, most probably as a result of anoxic environments in underground burrows, but that spiracular control is enhanced to reduce respiratory water loss in beetle species that live in arid habitats. Received 4 August 1999 / Accepted: 7 October 1999  相似文献   

20.
Spiracles and the tracheal system of insects allow effective delivery of respiratory gases. During development, holometabolous insects encounter large changes in the functional morphology of gas exchange structures. To investigate changes in respiratory patterns during development, CO2-release was measured in larvae, pre-pupae and pupae of Samia cynthia (Lepidoptera, Saturniidae). Gas exchange patterns showed great variability. Caterpillars had high metabolic rates and released carbon dioxide continuously. Pre-pupae and pupae showed typical discontinuous gas exchange cycles (DGC) at reduced metabolic rates. Changes in gas exchange patterns can partly be explained with low metabolic rates during pupation. Sequential blocking of spiracles in pre-pupae and pupae reduced spiracle conductance with tracheal conductance remaining unaffected. Analysis of gas exchange patterns indicates that caterpillars and pre-pupae use more than 14 spiracles simultaneously while pupae only use 8 to 10 spiracles. Total conductance is not a simple multiple of single spiracles, but may be gradually adaptable to gas exchange demands. Surprisingly, moth pupae showed a DGC if all except one spiracle were blocked. The huge conductance of single spiracles is discussed as a pre-adaptation to high metabolic demands at the beginning and the end of the pupal as well as in the adult stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号