首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intensive antibiotic treatment of cystic fibrosis (CF) patients with chronic lung infection with Pseudomonas aeruginosa has improved the survival rate and the clinical condition of Danish patients. Acquirement of resistance to anti-pseudomonal antibiotics is one of the main drawbacks of this therapeutic strategy and our results showed the development of resistance of P. aeruginosa to several antibiotics during 25 years of intensive antibiotic treatment. Our studies have been concentrating on the development of resistance to beta-lactam antibiotics. We have shown an association between the development of resistance to beta-lactam antibiotics and the occurrence of high beta-lactamase producing strains and between the MIC of the beta-lactams and the levels of beta-lactamase expression. Partially derepressed mutants, characterized by high basal levels of beta-lactamase with the possibility of induction to even higher levels during treatment with beta-lactam antibiotics, were the most frequent phenotype found among resistant Danish P. aeruginosa CF isolates. We have also shown that the high alginate producing P. aeruginosa isolates, that characterize the chronic lung infection in CF patients, are more susceptible to antibiotics and produce less beta-lactamase than the non-mucoid paired isolates. We propose that the non-mucoid isolates are exposed to a relatively higher antibiotic pressure than the mucoid isolates and therefore, they become easily antibiotic resistant and in consequence produce high levels of beta-lactamase. The beta-lactamase produced by the non-mucoid isolates might play a protective role in the biofilm, defending the mucoid isolates from the action of beta-lactam antibiotics and helping them to maintain their antibiotic susceptibility. We have also shown that beta-lactamase, which is a periplasmic enzyme, can be secreted extracellulary packed in membrane vesicles liberated by high beta-lactamase-producing P. aeruginosa. The continuos presence in the CF lungs of bacteria producing high basal levels of beta-lactamase (partial derepressed) induces a humoral immune response to beta-lactamase. We have shown that antibodies against the chromosomally encoded beta-lactamase (a beta ab) might be considered a marker of the development of resistance to beta-lactam antibiotics. We investigated the humoral immune response to beta-lactamase by quantifying a beta ab specific IgG and IgG subclass antibodies, by investigating the influence of the allotypes on the IgG subclass response and by measuring the avidity of the IgG a beta ab. We found that CF patients with good lung function had in the early stages of the chronic lung infection higher titers of a beta ab of good avidity than patients with poor lung function. Therefore, we raised the hypothesis that some of the a beta ab might have beta-lactamase neutralizing effect, playing a beta-lactamase inhibitor role and improving the effect of the treatment with beta-lactam antibiotics. Finally, we tested our hypothesis in the rat model of chronic lung infection by assessing the effect of a beta ab raised by vaccination with purified chromosomal beta-lactamase on the outcome of the treatment with ceftazidime of bacteria resistant to beta-lactam antibiotics. Our results showed that significantly lower bacterial load and better lung pathology were found in rats with neutralizing antibodies compared to non-immunized rats or rats without neutralizing antibodies. Our findings might be of potential importance for the improvement of the treatment with beta-lactam antibiotics of resistant P. aeruginosa hyperproducing chromosomal beta-lactamase that represent a threat especially for patients with CF and chronic lung infection.  相似文献   

2.
The survival of antibiotic-resistant and -sensitive strains of Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Streptococcus equinus, and two environmental isolates, AP17 and AQ62, was examined in estuarine water. Each strain was rendered resistant to a combination of two antibiotics by serial passage in increasing concentrations of antibiotics. Cultures were incubated in filter-sterilized estuarine water for up to 7 days. Recovery was assessed by examining colony-forming ability on media with and without antibiotics. None of the antibiotic-resistant forms survived longer than its antibiotic-sensitive counterpart in estuarine water. Three of the resistant strains died off more rapidly than the antibiotic-sensitive wild type. Survival of the test bacteria in estuarine water was as follows: sensitive and resistant AQ62, resistant Escherichia coli less than sensitive Escherichia coli less than resistant AP17 less than resistant Enterococcus faecium less than sensitive AP17, sensitive and resistant S. equinus less than sensitive and resistant Enterococcus faecalis, sensitive Enterococcus faecium. The results supported the suggestion that fecal entercocci may serve as better indicators of fecal pollution than Escherichia coli in marine ecosystems. Moreover, the results indicated that the use of antibiotic-resistant mutants to follow the fate of bacteria in the environment is inappropriate without adequate studies to ensure that resistant and wild-type strains react similarly to environmental stressors.  相似文献   

3.
Standard plate count (SPC) bacteria were isolated from a drinking-water treatment facility and from the river supplying the facility. All isolates were identified and tested for their resistance to six antibiotics to determine if drug-resistant bacteria were selected for as a consequence of water treatment. Among the isolates surviving our test procedures, there was a significant selection (P less than 0.05) of gram-negative SPC organisms resistant to two or more of the test antibiotics. These bacteria were isolated from the flash mix tank, where chlorine, alum, and lime are added to the water. Streptomycin resistance in particular was more frequent in this population as compared with bacteria in the untreated river water (P less than 0.01). SPC bacteria from the clear well, which is a tank holding the finished drinking water at the treatment facility, were also more frequently antibiotic resistant than were the respective river water populations. When 15.8 and 18.2% of the river water bacteria were multiply antibiotic resistant, 57.1 and 43.5%, respectively, of the SPC bacteria in the clear well were multiply antibiotic resistant. Selection for bacteria exhibiting resistance to streptomycin was achieved by chlorinating river water in the laboratory. We concluded that the selective factors operating in the aquatic environment of a water treatment facility can act to increase the proportion of antibiotic-resistant members of the SPC bacterial population in treated drinking water.  相似文献   

4.
A field investigation of marine coastal waters revealed that the frequency of pigmented bacteria and the occurrence of bacterial antibiotic resistance were higher at the air-water interface than in the bulk water. The differences in the frequency of pigmented colonies at the surface and in the bulk-water samples could not be explained by the degree of cell surface hydrophobicity or by bacterial adhesion to air-water interfaces. Pigmented strains exhibited a higher degree of multiple drug resistance than did nonpigmented strains. However, the frequency of multiple drug resistance in nonpigmented strains was also substantial. An average of 91% of all strains were resistant to more than one antibiotic, and 21% of the bacteria isolated were resistant to five of the eight antibiotics tested. High numbers of plasmid-carrying strains were found among selected surface isolates, but the presence of detectable plasmids could not be correlated with either pigmentation or multiple drug resistance. Furthermore, selected surface isolates were significantly more resistant to mercury than were bulk-water bacteria. The higher frequency of pigmented, antibiotic-resistant, and mercury resistant strains at the air-water interface than in the bulk water are discussed in terms of various forms of selective pressure and genetic exchange at the surface.  相似文献   

5.
A field investigation of marine coastal waters revealed that the frequency of pigmented bacteria and the occurrence of bacterial antibiotic resistance were higher at the air-water interface than in the bulk water. The differences in the frequency of pigmented colonies at the surface and in the bulk-water samples could not be explained by the degree of cell surface hydrophobicity or by bacterial adhesion to air-water interfaces. Pigmented strains exhibited a higher degree of multiple drug resistance than did nonpigmented strains. However, the frequency of multiple drug resistance in nonpigmented strains was also substantial. An average of 91% of all strains were resistant to more than one antibiotic, and 21% of the bacteria isolated were resistant to five of the eight antibiotics tested. High numbers of plasmid-carrying strains were found among selected surface isolates, but the presence of detectable plasmids could not be correlated with either pigmentation or multiple drug resistance. Furthermore, selected surface isolates were significantly more resistant to mercury than were bulk-water bacteria. The higher frequency of pigmented, antibiotic-resistant, and mercury resistant strains at the air-water interface than in the bulk water are discussed in terms of various forms of selective pressure and genetic exchange at the surface.  相似文献   

6.
The prevalence of antibiotic-resistant bacteria in the marine environment is a growing concern, but the degree to which marine mammals, seabirds and fish harbor these organisms is not well documented. This project sought to identify the occurrence and patterns of antibiotic resistance in bacteria isolated from vertebrates of coastal waters in the northeastern United States. Four hundred and seventy-two isolates of clinical interest were tested for resistance to a suite of 16 antibiotics. Fifty-eight percent were resistant to at least one antibiotic, while 43% were resistant to multiple antibiotics. A multiple antibiotic resistance index value ≥0.2 was observed in 38% of the resistant pathogens, suggesting exposure of the animals to bacteria from significantly contaminated sites. Groups of antibiotics were identified for which bacterial resistance commonly co-occurred. Antibiotic resistance was more widespread in bacteria isolated from seabirds than marine mammals, and was more widespread in stranded or bycaught marine mammals than live marine mammals. Structuring of resistance patterns based on sample type (live/stranded/bycaught) but not animal group (mammal/bird/fish) was observed. These data indicate that antibiotic resistance is widespread in marine vertebrates, and they may be important reservoirs of antibiotic-resistant bacteria in the marine environment.  相似文献   

7.
A total of 1,900 lactose-fermenting bacteria were isolated from raw sewage influent and chlorinated sewage effluent from a sewage treatment plant, as well as from chlorinated and neutralized dilute sewage, before and after a 24-h regrowth period in the laboratory. Of these isolates, 84% were resistant to one or more antibiotics. Chlorination of influent resulted in an increase in the proportion of bacteria resistant to ampicillin and cephalothin, the increase being most marked after regrowth occurred following chlorination. Of the other nine antibiotics tested, chlorination resulted in an increased proportion of bacteria resistant to some, but a decrease in the proportion resistant to the remainder. Multiple resistance was found for up to nine antibiotics, especially in regrowth populations. Identification of about 5% of the isolates showed that the highest proportion of Escherichia coli fell in untreated sewage. Some rare and potentially pathogenic species were isolated from chlorinated and regrowth samples, including Yersinia enterocolitica, Yersinia pestis, Pasteurella multocida, and Hafnia alvei. Our results indicate that chlorination, while initially lowering the total number of bacteria in sewage, may substantially increase the proportions of antibiotic-resistant, potentially pathogenic organisms.  相似文献   

8.
A total of 1,900 lactose-fermenting bacteria were isolated from raw sewage influent and chlorinated sewage effluent from a sewage treatment plant, as well as from chlorinated and neutralized dilute sewage, before and after a 24-h regrowth period in the laboratory. Of these isolates, 84% were resistant to one or more antibiotics. Chlorination of influent resulted in an increase in the proportion of bacteria resistant to ampicillin and cephalothin, the increase being most marked after regrowth occurred following chlorination. Of the other nine antibiotics tested, chlorination resulted in an increased proportion of bacteria resistant to some, but a decrease in the proportion resistant to the remainder. Multiple resistance was found for up to nine antibiotics, especially in regrowth populations. Identification of about 5% of the isolates showed that the highest proportion of Escherichia coli fell in untreated sewage. Some rare and potentially pathogenic species were isolated from chlorinated and regrowth samples, including Yersinia enterocolitica, Yersinia pestis, Pasteurella multocida, and Hafnia alvei. Our results indicate that chlorination, while initially lowering the total number of bacteria in sewage, may substantially increase the proportions of antibiotic-resistant, potentially pathogenic organisms.  相似文献   

9.
Fifty antibiotic-resistant Enterococcus strains were isolated from raw sewage of a wastewater treatment plant and from the same sewage after trickling through a 25-cm sand column, which retained >99% of the initial population. All 50 Enterococcus isolates were resistant against triple sulfa and trimethoprim/sulfamethoxazole and none were resistant against vancomycin. Most of the isolates from raw sewage were resistant to more antibiotics than the isolates from sand column effluent. One Enterococcus isolate from raw sewage (no. 61) and one Enterococcus isolate from sand column effluent (no. 95) had ten antibiotic resistances each. Isolate no. 95 maintained its resistances in the absence of antibiotics during the whole study. It was compared with isolate no. 70, which was one of the isolates, being resistant only against the two sulfonamides. Phenotypically and biochemically, the two organisms were strains of Enterococcus faecalis. Sequence analysis of partical 16S rDNA allowed alignment of isolate no. 95 as a strain of Enterococcus faecium and of isolate no. 70 as a strain of E. faecalis. E. faecium strain no. 95 carried at least six different plasmids, whereas for E. faecalis strain no. 70, no discrete plasmid band was seen on the gels.  相似文献   

10.
Aims:  To determine the incidence of multiple antibiotic-resistant strains of the emergent human pathogens Legionella pneumophila , Pseudomonas aeruginosa and mesophilic Aeromonas species among those isolated from water reservoirs and industrial cooling systems.
Methods and Results:  Water from four natural water reservoirs and four industrial cooling towers was sampled for 1 year period. The total heterotrophs, mesophilic Aeromonas , Pseudomonas spp. and Legionella spp. counts were performed as recommended by standard procedures, and the sensitivity of the isolates to 27 antibiotics was tested. A total of 117 Aeromonas , 60 P. aeruginosa and 15  L. pneumophila strains were isolated and identified by means of biochemical tests and DNA probes. 46·4% of Aeromonas , and 100% of P. aeruginosa isolates presented multiple resistance. Legionella pneumophila strains were generally sensitive to the drugs used.
Conclusions:  Antibiotic-resistant pathogenic bacteria belonging to P. aeruginosa and mesophilic Aeromonas species are common in natural aquatic environments. Thus, the risk of waterborne diseases owing to domestic and industrial uses of freshwater should be re-examined from the increase of bacterial resistance point of view.
Significance and Impact of the Study:  These data confirm the emergence of bacteria resistant to antibiotics in aquatic environments.  相似文献   

11.
Sewage effluent and outfall confluence samples were collected at the Barceloneta Regional Treatment Plant in Barceloneta, Puerto Rico; outfall confluence samples at Ocean City, Md., were also collected. Samples from uncontaminated open ocean areas served as clean-water controls. Bacteria were enriched in marine broth 2216 amended with 1 microgram of one of a set of chemicals selected for study per ml: nitrobenzene, dibutyl phthalate, m-cresol, o-cresol, 4-nitroaniline, bis(tributyltin) oxide, and quinone. MICs of the chemicals were determined individually for all isolates. Bacterial isolates were evaluated for resistance to nine different antibiotics and for the presence of plasmid DNA. Treated sewage was found to contain large numbers of bacteria simultaneously possessing antibiotic resistance, chemical resistance, and multiple bands of plasmid DNA. Bacteria resistant to penicillin, erythromycin, nalidixic acid, ampicillin, m-cresol, quinone, and bis(tributyltin) oxide were detected in nearly all samples, but only sewage outfall confluence samples yielded bacterial isolates that were resistant to streptomycin. Bacteria resistant to a combination of antibiotics, including kanamycin, chloramphenicol, gentamicin, and tetracycline, were isolated only from sewage effluent samples. It is concluded that bacterial isolates derived from toxic chemical wastes more frequently contain plasmid DNA and demonstrate antimicrobial resistance than do bacterial isolates from domestic sewage-impacted waters or from uncontaminated open ocean sites.  相似文献   

12.
Sewage effluent and outfall confluence samples were collected at the Barceloneta Regional Treatment Plant in Barceloneta, Puerto Rico; outfall confluence samples at Ocean City, Md., were also collected. Samples from uncontaminated open ocean areas served as clean-water controls. Bacteria were enriched in marine broth 2216 amended with 1 microgram of one of a set of chemicals selected for study per ml: nitrobenzene, dibutyl phthalate, m-cresol, o-cresol, 4-nitroaniline, bis(tributyltin) oxide, and quinone. MICs of the chemicals were determined individually for all isolates. Bacterial isolates were evaluated for resistance to nine different antibiotics and for the presence of plasmid DNA. Treated sewage was found to contain large numbers of bacteria simultaneously possessing antibiotic resistance, chemical resistance, and multiple bands of plasmid DNA. Bacteria resistant to penicillin, erythromycin, nalidixic acid, ampicillin, m-cresol, quinone, and bis(tributyltin) oxide were detected in nearly all samples, but only sewage outfall confluence samples yielded bacterial isolates that were resistant to streptomycin. Bacteria resistant to a combination of antibiotics, including kanamycin, chloramphenicol, gentamicin, and tetracycline, were isolated only from sewage effluent samples. It is concluded that bacterial isolates derived from toxic chemical wastes more frequently contain plasmid DNA and demonstrate antimicrobial resistance than do bacterial isolates from domestic sewage-impacted waters or from uncontaminated open ocean sites.  相似文献   

13.
The effluent of a pharmaceutical company was examined microbiologically. Its bacterial count was 2.15 × 105 c.f.u./ml and there was evidence of faecal contamination with MPN of > 1800. The organisms encountered included Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Serratia marcescens and Pseudomonas aeruginosa. The resistances of the 25 bacterial strains isolated from the effluent to the commonly used antibiotics were studied. About 80% of the isolates were resistant to Amoxycillin, 76% to Nitrofurantoin, 64% to Cotrimoxazole and Augmentin, 60% were resistant to Nalidixic acid, 52% were resistant to Tetracycline and Ofloxacin, while resistance of 12% was obtained for Gentamicin. Among the eight antibiotics tested, seven patterns of drug resistance were obtained and all of them were multiple-drug resistance with the number of antibiotics ranging from 2–8. All the strains of E. coli and S. aureus had high MIC values for Cloxacillin and Amoxycillin. In all, 13 strains of the bacterial isolates had evidence for the production of -lactamases. The potential of the effluent in spreading drug resistance and the public health implications are discussed.  相似文献   

14.
Microbial communities play a vital role in maintaining soil health. A multiphasic approach to assess the effect of pulp and paper mill effluent on both the structure and function of microbial soil communities is taken. Bacterial communities from agricultural soils irrigated with pulp and paper mill effluent were compared to communities form soils irrigated with well water. Samples were taken from fields in the state of Uttarakhand, India, where pulp and paper mill effluent has been used for irrigation for over 25 years. Comparisons of bacterial community structure were conducted using sequencing of the 16S rRNA gene from both isolates and clone libraries attained from the soil. Community-level physiological profiling was used to characterize the functional diversity and catabolic profile of the bacterial communities. The multiphasic approach using both physiological and molecular techniques proved to be a powerful tool in evaluating the soil bacterial community population and population differences therein. A significant and consistent difference in the population structure and function was found for the bacterial communities from soil irrigated with effluent in comparison to fields irrigated with well water. The diversity index parameters indicated that the microbial community in pulp and paper mill effluent irrigated fields were more diverse in both structure and function. This suggests that the pulp and paper mill effluent is not having a negative effect on the soil microbial community, but in fact may have a positive influence. In terms of soil health, this finding supports the continued use of pulp and paper mill effluent for irrigation. This is however only one aspect of soil health which was evaluated. Further studies on soil resistance and robustness could be undertaken to holistically evaluate soil health in this situation.  相似文献   

15.
In order to evaluate the impact of an urban effluent on antibiotic resistance of freshwater bacterial populations, water samples were collected from the Arga river (Spain), upstream and downstream from the wastewater discharge of the city of Pamplona. Strains of Enterobacteriaceae (representative of the human and animal commensal flora) (110 isolates) and Aeromonas (typically waterborne bacteria) (118 isolates) were selected for antibiotic susceptibility testing. Most of the Aeromonas strains (72%) and many of the Enterobacteriaceae (20%) were resistant to nalidixic acid. Singly nalidixic acid-resistant strains were frequent regardless of the sampling site for Aeromonas, whereas they were more common upstream from the discharge for enterobacteria. The most common resistances to antibiotics other than quinolones were to tetracycline (24.3%) and beta-lactams (20.5%) for Enterobacteriaceae and to tetracycline (27.5%) and co-trimoxazole (26.6%) for Aeromonas. The rates of these antibiotic resistances increased downstream from the discharge at similar degrees for the two bacterial groups; it remained at high levels for enterobacteria but decreased along the 30-km study zone for Aeromonas. Genetic analysis of representative strains demonstrated that these resistances were mostly (enterobacteria) or exclusively (Aeromonas) chromosomally mediated. Moreover, a reference strain of Aeromonas caviae (CIP 7616) could not be transformed with conjugative R plasmids of enterobacteria. Thus, the urban effluent resulted in an increase of the rates of resistance to antibiotics other than quinolones in the riverine bacterial populations, despite limited genetic exchanges between enterobacteria and Aeromonas. Quinolone resistance probably was selected by heavy antibiotic discharges of unknown origin upstream from the urban effluent.  相似文献   

16.
Antibiotic-resistant bacteria in drinking water.   总被引:9,自引:6,他引:3       下载免费PDF全文
We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.  相似文献   

17.
Imipenem is often used to treat intensive care unit patients infected by Enterobacter aerogenes, but it is leading to an increasing number of antibiotic resistant strains. Clinical isolates and imipenem resistant variants presented a high level of resistance to beta-lactam antibiotic group and to chemically unrelated drugs. We report here that imipenem selects strains which contain active efflux pumps ejecting various unrelated antibiotics including quinolones, tetracycline, and chloramphenicol. An increase of AcrA, an efflux pump component, was observed in the imipenem resistant variants. The overexpression of marA, involved in the genetic control of membrane permeability via porin and efflux pump expression, indicated the activation of the resistance genetic cascade in imipenem resistant variants.  相似文献   

18.
One hundred and thirty six Lactobacillus strains isolated from poultry and 23 Lactobacillus strains isolated from long-living persons were tested for their antibiotic sensitivity. Occurrence of some type determinants of resistance to aminoglycoside antibiotics and tetracyclines in the Lactobacillus strains resistant to these antibiotics was studied. The majority of the strains from the both collections were resistant to aminoglycosides (73 and 79 per cent, respectively). The isolates from the poultry were characterized by multiple resistance. The isolates from the long-living persons were most frequently resistant to one of two antibiotics. All the tested Lactobacillus strains isolated from the long-living persons were sensitive to tetracyclines. The species composition of the isolates was different. The antibiotic-resistant strains were detected in all the species involved in the study. By hybridization of Lactobacillus colonies with the probes containing various genes of the resistance it was shown that in 14 per cent of the antibiotic-resistant strains belonging to Lactobacillus the antibiotic resistance was controlled by the genes homologous to resistance genes widely distributed in gramnegative organisms. This indicated a possible wide exchange and heterologous expression of the antibiotic resistance determinants between microorganisms of various taxonomic groups.  相似文献   

19.
The studies aimed at analysing the resistance to some beta-lactam antibiotics among E. coli and K. pneumoniae clinical isolates and at evaluating. The extended spectrum of beta-lactamases (ESBL) production in the isolates. The analysis included 137 E. coli strains and 52 K. pneumoniae strains, isolated from hospitalized patients and out-patients treated in the first trimester of 1998. The strains were identified using the ATB computer system. Antibiotic sensitivity of the isolates was determined by disc-diffusion tests. ESBL production capacity of E. coli and K. pneumoniae strains was estimated by double-disc and ATB BLSA tests. Most of the analysed E. coli strains were found to exhibit significant sensitivity to compound penicillin preparations containing beta-lactam inhibitor (Augmentin, Tazocin) and to the third generation cefalosporins, in contrast, K. pneumoniae strains much more frequently were resistant to the drugs. Among the obtained isolates, 3 (2.2%) E. coli strains and 21 (40.4%) K. pneumoniae strains produced ESBL but all the isolates proved sensitive to imipenem. In evaluation of ESBL production-detecting tests, the double-disc test was found to be more reliable than ATB BLSA test.  相似文献   

20.
Two antibiotic-resistant mutants of Enterobacter cloacae (AZT-R and AMA-R), obtained by selection with aztreonam and carumonam, were studied. Both mutants were resistant to beta-lactam antibiotics. In addition, AMA-R was also resistant to chloramphenicol, trimethoprim and brodimoprim, whereas AZT-R was hypersensitive to these compounds. Cytoplasmic and outer membranes of these bacteria were separated by sucrose density gradient centrifugation. Analysis of the outer membranes using SDS-PAGE showed marked changes in the bands corresponding to the porins (between 35 and 40 kDa). In the two mutants, the 39 kDa band was reduced to approximately 30% of the wild-type and the 36.5 kDa band was absent. Labelling of the outer membranes with the hydrophobic photolabel 3-(trifluoomethyl)- 3-(m-[125I]iodophenyl)diazirine ([125I]TID) enabled the above bands as well as a 28.8 kDa band to be identified as integral membrane proteins, thus supporting the suggestion that they correspond to porins and OmpA protein, respectively. Whereas the changes observed in outer-membrane proteins are assumed to be responsible for resistance to beta-lactam antibiotics, the basis of hypersensitivity of AZT-R to hydrophobic antibiotics remains to be more clearly defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号