首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular clockwork underlying the generation of circadian rhythmicity within the suprachiasmatic nucleus (SCN) develops gradually during ontogenesis. The authors' previous work has shown that rhythms in clock gene expression in the rat SCN are not detectable at embryonic day (E) 19, start to form at E20 and develop further via increasing amplitude until postnatal day (P) 10. The aim of the present work was to elucidate whether and how swiftly the immature fetal and neonatal molecular SCN clocks can be reset by maternal cues. Pregnant rats maintained under a light-dark (LD) regimen with 12 h of light and 12 h of darkness were exposed to a 6-h delay of the dark period and released into constant darkness at different stages of the fetal SCN development. Adult rats maintained under the same LD regimen were exposed to an identical shifting procedure. Daily rhythms in spontaneous c-fos, Avp, Per1, and Per2 expression were examined within the adult and newborn SCN by in situ hybridization. Exposure of adult rats to the shifting procedure induced a significant phase delay of locomotor activity within 3 days after the phase shift as well as a delay in the rhythms of c-fos and Avp expression within 3 days and Per1 and Per2 expression within 5 days. Exposure of pregnant rats to the shifting procedure at E18, but not at E20, delayed the rhythm in c-fos and Avp expression in the SCN of newborn pups at P0-1. The shifting procedure at E20 did, however, induce a phase delay of Per1 and Per2 expression rhythms at P3 and P6. Hence, 5 days were necessary for phase-shifting the pups' SCN clock by maternal cues, be it the interval between E18 and P0-1 or the interval between E20 and P3, while only 3 days were necessary for phase-shifting the maternal SCN by photic cues. These results demonstrate that the SCN clock is capable of significant phase shifts at fetal developmental stages when no or very faint molecular oscillations can be detected.  相似文献   

2.
The hypothalamic suprachiasmatic nucleus (SCN) is primarily responsible for the regulation of circadian rhythmicity. Melatonin, the pineal-derived neurohormone, modulates the rhythmic output of the SCN. Property timed exposure to melatonin is able to induce changes in rhythmic function and thereby entrain circadian rhythms of activity. c-fos is an immediate early gene that is transiently expressed in neurons in response to receptor activation. The ventrolateral portion of the SCN (vSCN) is activated in response to phase-shifting stimuli, an event which is marked by an increase in the expression of c-fos.  相似文献   

3.
Abstract

The hypothalamic suprachiasmatic nucleus (SCN) is primarily responsible for the regulation of circadian rhythmicity. Melatonin, the pineal-derived neurohormone, modulates the rhythmic output of the SCN. Properly timed exposure to melatonin is able to induce changes in rhythrnic function and thereby entrain circadian rhythms of activity.

c-fos is an immediate early gene that is transiently expressed in neurons in response to receptor activation. The ventrolateral portion of the SCN (vSCN) is activated in response to phase-shifting stimuli, an event which is marked by an increase in the expression of c-fos.

In the present study, rats systemically administered the melatonin agonist 2-iodomelatonin at CT 22 demonstrated significant dose-dependent Fos immunoreactivity within the vSCN, an effect which was significantly inhibited by the melatonin antagonist N-acetyltryptamine. The Fos expression observed in the vSCN was not affected by treatment with the serotonin antagonist ketanserin or the alpha-adrenergic antagonist phentolamine. Moreover, antisense oligonucleotides to c-fos, significantly blocked the ability of 2-iodomelatonin to induce Fos expression in the vSCN at CT 22.

These results pharmacologically characterize melatonin-induced c-fos expression in the rat vSCN and provide evidence to support a c-fos-mediated mechanism through which the activation of melatonin receptors may be linked to the long-term molecular regulation of circadian rhythms controlled by the SCN.  相似文献   

4.
5.
Nitric oxide (NO) is an endogenous gas that functions as a neurotransmitter. Because NO is very labile with a half-life of less than 5 sec, most functional studies of NO have manipulated its synthetic enzyme, NO synthase (NOS). Three isoforms of NOS have been identified: (1) in the endothelial lining of blood vessels (eNOS), (2) an inducible form found in macrophages (iNOS), and (3) in neurons (nNOS). Most pharmacological studies to date have blocked all three isoforms of NOS. Previous studies using such agents have revealed that NO might be necessary for photic entrainment of circadian rhythms; general NOS inhibitors attenuate phase shifts of free-running behavior, light-induced c-fos expression in the suprachiasmatic nucleus (SCN), and phase shifts of neural firing activity in SCN maintained in vitro. To assess the specific role of nNOS in mediating entrainment of circadian rhythms, mice with targeted deletion of the gene encoding the neuronal isoform of NOS (nNOS-/-) were used. Wild-type (WT) and nNOS-/- mice initially were entrained to a 14:10 light:dark (LD) cycle. After 3 weeks, the LD cycle was either phase advanced or phase delayed. After an additional 3 weeks, animals were held in either constant dim light or constant dark. WT and nNOS-/- animals did not differ in their ability to entrain to the LD cycle, phase shift locomotor activity, or free run in constant conditions. Animals held in constant dark were killed after light exposure during either the subjective day or subjective night to assess c-fos induction in the SCN. Light exposure during the subjective night increased c-fos expression in the SCN of both WT and nNOS-/- mice relative to animals killed after light exposure during the subjective day. Taken together, these findings suggest that NO from neurons might not be necessary for photic entrainment.  相似文献   

6.
The c-fos expression was investigated in primary culture of guinea-pig endometrial cells. Cells were made quiescent by serum depletion. Stimulation of these cells by estradiol (E2, 10(-8)M) alone or in combination with epidermal growth factor (EGF, 100 ng/ml) or insulin (10 micrograms/ml) failed to induce c-fos gene. The c-fos expression was early and transiently increased by fetal calf serum (15%) or estradiol plus EGF plus insulin. Protein synthesis inhibitors (cycloheximide or anisomycin) in association with E2 induced a superinduction of c-fos gene. In the same conditions puromycin had no effect. It appears that E2 acts in a multiple step process including an initial c-fos gene derepression by either EGF plus insulin or some protein synthesis inhibitors.  相似文献   

7.
The c-fos mRNA expression pattern in rat neocortex, was determined in the rat kept in a 12:12 light/dark cycle, in constant dark, or in constant light by in situ hybridization. At the beginning of the light period, c-fos mRNA was induced both in the neocortex and suprachiasmatic nucleus (SCN). Transiently increased c-fos mRNA expression was detected from 0830 to 0900 and soon declined to basal levels. Immediately prior to the beginning of the dark period, c-fos mRNA expression also increased and remained elevated in the neocortex following the dark period. In the constant dark group, c-fos mRNA expression showed no transient elevation at the beginning of the light period. On the other hand, c-fos mRNA expression in the constant light group increased during their subjective dark period as well as normal light/dark cycle. These results demonstrate a circadian pattern of c-fos mRNA expression in the neocortex which is similar to that observed previously in the inner and outer nuclear layers of the retina.  相似文献   

8.
9.
In temperate zones duration of daylight, i.e. photoperiod, changes with the seasons. The changing photoperiod affects animal as well as human physiology. All mammals exhibit circadian rhythms and a circadian clock controlling the rhythms is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN consists of two parts differing morphologically and functionally, namely of the ventrolateral (VL) and the dorsomedial (DM). Many aspects of SCN-driven rhythmicity are affected by the photoperiod. The aim of the present overview is to summarize data about the effect of the photoperiod on the molecular timekeeping mechanism in the rat SCN, especially the effect on core clock genes, clock-controlled genes and clock-related genes expression. The summarized data indicate that the photoperiod affects i) clock-driven rhythm in photoinduction of c-fos gene and its protein product within the VL SCN, ii) clock-driven spontaneous rhythms in clock-controlled, i.e. arginine-vasopressin, and in clock-related, i.e. c-fos, gene expression within the DM SCN, and iii) the core clockwork mechanism within the rat SCN. Hence, the whole central timekeeping mechanism within the rat circadian clock measures not only the daytime but also the time of the year, i.e. the actual season.  相似文献   

10.
The mammalian circadian system develops gradually during ontogenesis, and after birth, the system is already set to a phase of the mothers. The role of maternal melatonin in the entrainment of fetal circadian clocks has been suggested, but direct evidence is lacking. In our study, intact or pinealectomized pregnant rats were exposed to constant light (LL) throughout pregnancy to suppress the endogenous melatonin and behavioral rhythms. During the last 5 days of gestation, the rats were injected with melatonin or vehicle or were left untreated. After delivery, daily expression profiles of c‐fos and Avp in the suprachiasmatic nuclei (SCN), and Per1, Per2, Rev‐erbα, and Bmal1 in the liver were measured in 1‐day‐old pups. Due to the LL exposure, no gene expression rhythms were detected in the SCN of untreated pregnant rats or in the SCN and liver of the pups. The administration of melatonin to pregnant rats entrained the pups' gene expression profiles in the SCN, but not in the liver. Melatonin did not affect the maternal behavior during pregnancy. Vehicle injections also synchronized the gene expression in the SCN but not in the liver. Melatonin and vehicle entrained the gene expression profiles to different phases, demonstrating that the effect of melatonin was apparently not due to the treatment procedure per se. The data demonstrate that in pregnant rats with suppressed endogenous melatonin levels, pharmacological doses of melatonin affect the fetal clock in the SCN but not in the liver. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 131–144, 2015  相似文献   

11.
12.
13.
Locomotor activity rhythms in a significant proportion of Siberian hamsters (Phodopus sungorus sungorus) become arrhythmic after the light-dark (LD) cycle is phase-delayed by 5 h. Arrhythmia is apparent within a few days and persists indefinitely despite the presence of the photocycle. The failure of arrhythmic hamsters to regain rhythms while housed in the LD cycle, as well as the lack of any masking of activity, suggested that the circadian system of these animals had become insensitive to light. We tested this hypothesis by examining light-induced gene expression in the suprachiasmatic nucleus (SCN). Several weeks after the phase delay, arrhythmic and re-entrained hamsters were housed in constant darkness (DD) for 24 h and administered a 30-min light pulse 2 h after predicted dark onset because light induces c-fos and per1 genes at this time in entrained animals. Brains were then removed, and tissue sections containing the SCN were processed for in situ hybridization and probed with c-fos and per1 mRNA probes made from Siberian hamster cDNA. Contrary to our prediction, light pulses induced robust expression of both c-fos and per1 in all re-entrained and arrhythmic hamsters. A separate group of animals held in DD for 10 days after the light pulse remained arrhythmic. Thus, even though the SCN of these animals responded to light, neither the LD cycle nor DD restored rhythms, as it does in other species made arrhythmic by constant light (LL). These results suggest that different mechanisms underlie arrhythmicity induced by LL or by a phase delay of the LD cycle. Whereas LL induces arrhythmicity by desynchronizing SCN neurons, phase delay-induced arrhythmicity may be due to a loss of circadian rhythms at the level of individual SCN neurons.  相似文献   

14.
15.
Exposure of mesangial cells to ionic Cd(2+) induces the proto-oncogene c-fos, while activating both Erk and stress-activated protein kinase (SAPK) MAP kinase pathways. While we have previously used a pharmacological inhibitor of Erk activation to implicate involvement of this pathway in the induction of c-fos by Cd(2+), the consequences of SAPK activation remained unknown. Here we use dominant negative inhibitors of the SAPK kinases, SEK1 and MKK7, to show that Cd(2+) activates SAPK through MKK7, but that partial inhibition of SAPK alone is insufficient to significantly affect the magnitude of the Cd(2+)-dependent increase in c-fos mRNA. However, inhibition of Erk and SAPK pathways together abrogates the increase, suggesting that these pathways act in concert in the induction of c-fos by this toxic metal.  相似文献   

16.
17.
The expression of c-fos protein in cultured human glial cells derived from the brain and spinal cord was investigated immunocytochemically. Primary cultures of fetal glial cells were maintained in culture for three weeks and deprived of animal sera for 22 h. The glial cell nature of the cells was ascertained by GFAP-immunoreactivity. Incubations with phorbol dibutyrate, 8-Br-cAMP and sodium nitroprusside representing signal transduction pathways of PKC, PKA and cyclic GMP kinase, respectively, were carried out for 60 and 120 min. The control serum-deprived cultures did not display c-fos protein immunoreactivity (c-fos-IR), whereas phorbol dibutyrate incubation for 120 min induced strong c-fos-IR in the nuclei of both brain and spinal cord derived glial cells. Semiquantitative intensity measurements revealed a slight c-fos-IR induction after 8-Br-cAMP as well, but not after sodium nitroprusside. The observations suggest that c-fos protein is involved in PKC and PKA signal transduction in cultured human glial cells.  相似文献   

18.
Summary The expression of c-fos protein in cultured human glial cells derived from the brain and spinal cord was investigated immunocytochemically. Primary cultures of fetal glial cells were maintained in culture for three weeks and deprived of animal sera for 22 h. The glial cell nature of the cells was ascertained by GFAP-immunoreactivity. Incubations with phorbol dibutyrate, 8-Br-cAMP and sodium nitroprusside representing signal transduction pathways of PKC, PKA and cyclic GMP kinase, respectively, were carried out for 60 and 120 min. The control serum-deprived cultures did not display c-fos protein immunoreactivity (c-fos-IR), whereas phobol dibutyrate incubation for 120 min induced strong c-fos-IR in the nuclei of both brain and spinal cord derived glial cells. Semiquantitative intensity measurements revealed a slight c-fos-IR induction after 8-Br-cAMP as well, but not after sodium nitroprusside. The observations suggest that c-fos protein is involved in PKC and PKA signal transduction in cultured human glial cells.  相似文献   

19.
The multiple isoforms of PDGF induce fibroblastic mitogenesis through two distinct PDGF receptors, alpha and beta. The molecular mechanisms by which these alpha and beta PDGF receptors regulate gene expression are poorly understood. We present data which indicates that differential induction of c-fos gene expression by PDGF isoforms occurs through distinct PDGF alpha and beta receptor-mediated signaling pathways. Comparison of PDGF-AA with PDGF-BB stimulation showed that PDGF-BB induced prolonged expression of the c-fos gene in BALB/c-3T3 cells, but that PDGF-AA induced more potent activation of the serum response element (SRE) in transient transfection assays. PDGF-AA, which binds alpha but not beta PDGF receptors, could only induce the SRE through a protein kinase C (PKC)-dependent pathway, whereas PDGF-BB, which binds both alpha and beta PDGF receptors, could also induce the SRE through a PKC-independent pathway. These results suggest that PDGF alpha receptors activate the PKC-dependent signaling pathway while PDGF beta receptors also activate a PKC-independent pathway. In addition, we found that PDGF-BB could induce another c-fos promoter element within the -90 to +10 region, suggesting that the more potent mitogenic effect and prolonged c-fos gene expression induced by PDGF-BB may result from cooperativity between more than one c-fos promoter elements.  相似文献   

20.
啮齿类动物的昼夜节律器及光周期对其影响机制   总被引:4,自引:0,他引:4  
节律性(rhythmicity)是生命的基本特征之一,从单细胞生物到哺乳类动物的各种功能活动,生长繁殖乃至某些细微的形态结构,随着时间的推移都可能呈现某种有规律性的反复改变,这就是生物周期性,或生物节律性,亦称生物节律(biologicalrhyt...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号