首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly oriented calf-thymus NaDNA fibers, prepared by a wet-spinning method, were complexed with netropsin in ethanol-water and trifluoroethanol (TFE)-water solutions. The relative fiber length, L/L0, was measured at room temperature as a function of ethanol or TFE concentration to obtain information on the B-A conformational transition. The B-A transition point and transition cooperativity of the fibers were calculated. The binding of netropsin to NaDNA fibers was found to stabilize B form and to displace the B-A transition to higher ethanol concentration, as indicated by its elongational effect on the fiber bundles. An increased salt concentration was found to reduce netropsin binding. In netropsin-free ethanol solution, the dissociation of bound netropsin from the DNA fibers was observable. Pure B-NaDNA fibers were found to be more stable in TFE solution than in ethanol solution. This was interpreted as being due to a different steric factor and a larger polarity of TFE compared with ethanol, resulting in its smaller capacity to reduce the water activity and dielectric constant of the medium in the immediate vicinity of DNA fibers. Therefore, the effect of netropsin binding on the B-A transition of NaDNA fibers became less obvious in TFE solution. In another series of experiments, L/L0 was measured as a function of temperature to obtain information on the helix-coil transition, or melting, as well as the B-A transition of NaDNA and NaDNA-netropsin fibers. The melting temperature and helix-coil transition width were calculated from the melting curves. A phenomenological approach was used to describe the melting behavior of the fibers in and around the B-A transition region. The effect of netropsin on the melting of DNA fibers was attributed mainly to the stabilization of B-DNA and to a higher melting cooperativity in the B-DNA region.  相似文献   

2.
Melting of two DNA duplexes of known nucleotide sequences containing 14 and 36 base pairs has been investigated within the range of ionic strength from 0.2 to 0.02 M [Na+]. The values of melting enthalpy of base pair delta H were measured for the duplex of 14 base pairs in the solutions of varying ionic strength. The values of delta H were obtained from slopes of linear plots of reciprocal melting temperature versus logarithm of oligonucleotide chains concentration. In the aforementioned range the decrease of the ionic strength causes a 5% decrease of delta H. By fitting the theoretical profiles to the experimental ones the ionic strength dependence of the nucleation constant beta was measured for DNA fragments of various lengths. With the decrease of the ionic strength the value of beta drops 2 times for the short duplex and 8 times for the long one.  相似文献   

3.
Abstract

We report both experimental and molecular simulation studies of the melting behavior of aniline confined within an activated carbon fiber having slit-shaped pores. Dielectric relaxation spectroscopy is used to determine the transition temperatures and also the dielectric relaxation times over the temperature range 240 to 340 K. For the confined system two transitions were observed, one at 298 K and a second transition at 324 K. The measured relaxation times indicate that the low temperature phase (below 298 K) is a crystalline or partially crystalline solid phase, while that above 324 K is a liquid-like phase; for the intermediate phase, in the range 298–324 K, the relaxation times are of the order 10?5s, which is typical of a hexatic phase. The melting temperature of the confined system is well above that of bulk aniline, which is 267 K. The simulations are carried out using the Grand Canonical Monte Carlo method together with Landau free energy calculations, and phase transitions are located as state points where the grand free energies of two confined phases are equal. The nature of these phases is determined by analysis of in-plane pair positional and orientational correlation functions. The simulations also show two transitions. The first is a transition from a two-dimensional hexagonal crystal phase to a hexatic phase at 296 K; the second transition is from the hexatic to a liquid-like phase at 336 K. Confinement within the slit-shaped pores appears to stabilize the hexatic phase, which is the stable phase over a wider temperature range than for quasi-two-dimensional thin films.  相似文献   

4.
We calculate thermal fluctuational base pair opening probability and the drug binding constant of a daunomycin-bound Poly d(CGTA) · Poly d(TACG) at temperatures from room temperature to its melting temperature. For comparison we also carry out a calculation on a drug-free DNA with the same sequence. Our calculations are carried out by means of a statistical approach using microscopic structures and established force fields and with cooperative effects incorporated into the algorithm. Both hydrogen bond disruption probabilities and drug unstacking probability are determined self-consistently. These probabilities are then used to determine temperature dependent base pair opening probabilities and the drug binding constant. The calculated base pair opening probabilities and drug binding constant are found to be in fair agreement with experiments carried out at room temperature. Our calculation shows cooperative base pair disruption and drug dissociation at certain critical temperatures close to the observed melting temperatures for similar helices. We find that the temperature dependence of the drug binding constant fits well to the van't Hoff relation, in agreement with observations. Our calculation indicates the occurrence of a premelting transition in the drug-bound DNA helix. Some comments are made about this premelting transition.  相似文献   

5.
On the basis of published measurements of the melting transitions of synthetic polydeoxyribonucleotides with known sequences we have determined the parameters of the interplane (stacking) interactions of base pairs in DNA over the range of ionic strengths from 0.01 to 0.1 M Na+. We found that deviations of the stacking-interaction energy from the mean value of 7-8 kcal/mole were extremely small and did not exceed 0.2 kcal/mole. We report an analysis of the influence of the heterogeneity of the stacking interactions on the melting parameters of polynucleotides with random sequences (models of natural DNA's). Inclusion of this effect does not significantly distort the linear dependence of the melting temperature on the relative content of G-C pairs and insignificantly affects the width of the helix-coil transition in DNA under normal conditions. However it is the heterogeneity of the stacking interactions that plays the crucial role in the melting of DNA under conditions where the difference between the relative stabilities of the A-T and G-C pairs tends to zero, as in concentrated solutions of tetraethylammonium and tetramethylammonium salts.  相似文献   

6.
Cu(2+) ion interaction with DNA in aqueous solutions containing urea (0-5 M) was studied by IR spectroscopy. It was shown that upon the Cu(2+) ion binding DNA transition into a compact form occurs. This transition is of positive cooperativity. We suppose that the mechanism of Cu(2+)-induced DNA compaction in solutions containing urea is not completely electrostatic. Urea addition to the DNA solution decreases the Cu(2+) ion concentration required to induce DNA compaction. As the urea content in solution rises, the binding constant of Cu(2+) ions interacting with DNA increases, going through the maximum in the case of 2 M solution; further increase of the urea content in solutions leads to decrease of the binding constant. DNA transition into the compact form under the Cu(2+) ion action is determined not only by the effects of the solution dielectric permeability but by the solvation effects; when changes of the dielectric permeability are small the solvation effects may prevail. Urea addition to the DNA solution also decreases cooperativity of the DNA compaction process. Perhaps, cooperativity of the DNA transition into the compact state depends on the ordered spatial structure of water adjacent to the macromolecule and decreases on the structure destruction.  相似文献   

7.
Deamidation kinetics were measured for a model hexapeptide (L-Val-L-Tyr-L-Pro-L-Asn-Gly-L-Ala, 0.02 mg/mL) in aqueous solutions containing glycerol (0-50% w/w) and poly(vinyl pyrrolidone) (PVP, 0-20% w/w) at 37 degrees C and pH 10 to determine the effects of solution polarity and viscosity on reactivity. The observed pseudo-first order deamidation rate constants, k(obs), decreased markedly when the viscosity increased from 0.7 to 13 cp, but showed no significant change at viscosities >13 cp. Values of k(obs) also increased with increasing dielectric constant and decreasing refractive index. Molecular dynamics simulations indicated that the free energy associated with Asn side-chain motion is insensitive to changes in dielectric constant, suggesting that the observed dielectric constant dependence is instead related primarily to the height of the transition state energy barrier. An empirical model was proposed to describe the effects of the viscosity, refractive index and dielectric constant on k(obs). Analysis of the regression coefficients suggested that both permanent and induced dipoles of the medium affect the deamidation rate constant, but that solution viscosity is relatively unimportant in the range studied.  相似文献   

8.
Effects of different end sequences on stability, circular dichroism spectra (CD), and enzyme binding properties were investigated for six 22-base pair, non-self-complementary duplex DNA oligomers. The center sequences of these deoxyoligonucleotides have 8-14 base pairs in common and are flanked on both sides by sequences differing in context and A-T content. Temperature-induced melting transitions monitored by differential scanning calorimetry (DSC) and ultraviolet absorbance were measured for the six duplexes in buffered 115 mM Na(+) solutions. Values of the melting transition enthalpy, DeltaH(cal), and entropy, DeltaS(cal), were obtained directly from DSC experiments. Melting transition parameters, DeltaH(vH) and DeltaS(vH), were also estimated from van't Hoff analysis of optical melting curves collected as a function of DNA concentration, assuming a two-state melting transition. Melting free energies (20 degrees C) of the six DNAs evaluated from DSC experiments ranged from -18.7 to -32.7 kcal/mol. van't Hoff estimates of the free energies ranged from -18.5 to -48.0 kcal/mol. With either method, the trends in free energy as a function of sequence were identical. Equilibrium binding by BamHI restriction endonuclease to the 22-base pair DNAs was also investigated. The central eight base pairs of all six molecules, 5'-A-GGATCC-A-3', contained a BamHI recognition sequence bounded by A-T base pairs. Magnesium free binding assays were performed by titering BamHI against a constant concentration of each of the deoxyoligonucleotide substrates and analyzing reaction products by gel retardation. Binding isotherms of the total amount of bound DNA versus protein concentration were constructed which provided semiquantitative estimates of the equilibrium dissociation constants for dissociation of BamHI from the six DNA oligomers. Dissociation constants ranged from 0.5 x 10(-)(9) to 12.0 x 10(-)(9) M with corresponding binding free energies of -12.5 to -10.6 (+/-0. 1) kcal/mol. An inverse relationship is found when binding and stability are compared.  相似文献   

9.
F M Chen 《Biochemistry》1984,23(25):6159-6165
Comparative studies on the salt titration and the related kinetics for poly(dG-dC) X poly(dG-dC) in pH 7.0 and 3.8 solutions clearly suggest that base protonation facilitates the kinetics of B-Z interconversion although the midpoint for such a transition in acidic solution (2.0-2.1 M NaCl) is only slightly lower than that of neutral pH. The rates for the salt-induced B to Z and the reverse actinomycin D induced Z to B transitions in pH 3.8 solutions are at least 1 order of magnitude faster than the corresponding pH 7.0 counterparts. The lowering of the B-Z transition barrier is most likely the consequence of duplex destabilization due to protonation as indicated by a striking decrease (approximately 40 degrees C) in melting temperature upon H+ binding in low salt. The thermal denaturation curve for poly(dG-dC) X poly(dG-dC) in a pH 3.8, 2.6 M NaCl solution indicates an extremely cooperative melting at 60.5 degrees C for protonated Z DNA, which is immediately followed by aggregate formation and subsequent hydrolysis to nucleotides at higher temperatures. The corresponding protonated B-form poly(dG-dC) X poly(dG-dC) in 1 M NaCl solution exhibits a melting temperature about 15 degrees C higher, suggesting further duplex destabilization upon Z formation.  相似文献   

10.
The dielectric response of human umbilical cord hyaluronic acid in various environments has been studied at microwave frquencies using a resonant microwave cavity as a probe. Both the real and imaginary parts of complex dielectric constant and the loss tangent for hyaluronate solutions are obtained by utilizing equations for perturbation of a resonant cavity. Dielectric changes at room temperature have been observed in aqueous solutions of hyaluronic acid as a function of concentration ranging from 0 to 350 mg/ml. The data indicate the existence of ordered phases in hyaluronate solutions at selective concentrations, that is, exhibiting lyotropic-type transitions. Hyaluronate solutions at 1.5 and 3 mg/ml concentrations have been studied at various pH in the range of 6–8 and at constant ionic strength 0.1. A temperature-dependent transition in hyaluronate solution of 120 mg/ml concentration has been observed at physiological temperature. It is shown that this temperature-dependent behavior can be related to the orientational polarizability term in the Debye theory of polar molecules in liquids.  相似文献   

11.
Vallone PM  Benight AS 《Biochemistry》2000,39(26):7835-7846
Effects of different end sequences on melting, circular dichroism spectra (CD), and enzyme binding properties were investigated for four 40 base pair, non-self-complementary duplex DNA oligomers. The center sequences of these oligoduplexes have either of two 22 base pair modules flanked on both sides by sequences differing in AT content. Temperature-induced melting transitions monitored by differential scanning calorimetry (DSC) and ultraviolet absorbance were measured for the six duplexes in buffered 115 mM Na(+) solutions. Values of the melting transition enthalpy, DeltaH(cal), and entropy, DeltaS(cal), were obtained directly from DSC experiments. Melting transition parameters, DeltaH(vH) and DeltaS(vH), were also estimated from a van't Hoff analysis of optical melting curves collected as a function of DNA concentration, assuming that the melting transition is two-state. Melting free energies (20 degrees C) evaluated from DSC melting experiments on the four duplex DNAs ranged from -52.2 to -77.5 kcal/mol. Free energies based on the van't Hoff analysis were -37.9 to -58.8 kcal/mol. Although the values are different, trends in the melting free energies of the four duplex DNAs as a function of sequence were identical in both DSC and optical analyses. Subject to several assumptions, values for the initiation free energy were estimated for each duplex, defined as DeltaG(int) = DeltaG(cal) - DeltaG(pred), where DeltaG(cal) is the experimental free energy at 20 degrees C determined from the experimentially measured values of the transition enthalpy, DeltaH(cal), and entropy, DeltaS(cal). The predicted free energy of the sequence, DeltaG(pred)(20 degrees C), is obtained using published nearest-neighbor sequence stability values. For three of the four duplexes, values of DeltaG(int) are essentially nil. In contrast, the duplex with 81.8% GC has a considerably higher estimate of DeltaG(int) = 7.1 kcal/mol. The CD spectra for the six duplexes collected over the wavelength range from 200 to 320 nm are also sequence-dependent. Factor analysis of the CD spectra by singular value decomposition revealed that the experimental CD spectra could be reconstructed from linear combinations of two minor and one major subspectra. Changes in the coefficients of the major subspectrum for different sequences reflect incremental sequence-dependent variations of the CD spectra. Equilibrium binding by BamHI restriction endonuclease to the 40 base pair DNAs whose central eight base pairs contain the recognition sequence for BamHI restriction enzyme bounded by A.T base pairs, 5'-A-GGATCC-A-3' was investigated. Binding assays were performed by titering BamHI against a constant concentration of each of the duplex DNA substrates, in the absence of Mg(2+), followed by analysis by gel retardation. Under the conditions employed, the enzyme binds but does not cleave the DNAs. Results of the assays revealed two binding modes with retarded gel mobilities. Binding isotherms for the fraction of bound DNA species versus enzyme concentration for each binding mode were constructed and analyzed with a simple two-step equilibrium binding model. This analysis provided semiquantitative estimates on the equilibrium binding constants for BamHI to the four DNAs. Values obtained for the binding constants varied only 7-fold and ranged from 6 x 10(-)(8) to 42 x 10(-)(8) M, with binding free energies from -8.6 to -9.7 (+/- 0.2) kcal/mol depending on the sequence that flanks the enzyme binding site. Unlike what was found earlier in binding studies of the 22 base pair duplexes that constitute the core modules of the present 40-mers [Riccelli, P. V., Vallone, P. M., Kashin, I., Faldasz, B. D., Lane, M. J., and Benight, A. S. (1999) Biochemistry 38, 11197-11208], no obvious relationship between binding and stability was found for these longer DNAs. Apparently, effects of flanking sequence stability on restriction enzyme binding may only be measurable in very short duplex deoxyoligonucl  相似文献   

12.
James D. McGhee 《Biopolymers》1976,15(7):1345-1375
Theoretical calculations are conducted on the helix–coil transition of DNA, in the presence of large, cooperatively binding ligands modeled after the DNA-binding proteins of current biological interest. The ligands are allowed to bind both to helx and to coil, to cover up any number of bases or base pairs in the complex, and to interact cooperatively with their nearest neighbors. The DNA is treated in the infinite homogeneous Ising model approximation, and all calculations are done by Lifson's method of sequence-generating functions. DNA melting curves are calculated by computer in order to expolore the effects on the transition of ligand size, binding constant, free activity, and ligand–ligand cooperativity. The calculations indicate that (1) at the same intrinsic free energy change per base pair of the complexes, small ligands, for purely entropic reasons, are more effective than are large ligands in shifting the DNA melting temperature; (2) the response of the DNA melting temperature to increased ligand binding constant K and/or free ligand activity L is adequately represented at high values of KL (but not at low KL) by a simple independent site model; (3) if curves are calculated with the total amount of added ligand remaining constant and the free ligand activity allowed to vary throughout the transition, biphasic melting curves can be obtained in the complete absence of ligand–ligand cooperativity. In an Appendix, the denaturation of poly[d(A-T)] in the presence of the drug, netropsin, is used to verify some features of the theory and to illustrate how the theory can be used to obtain numerical estimates of the ligand binding parameters from the experimental melting curves.  相似文献   

13.
Hybridization kinetics of DNA sequences with known secondary structures and random sequences designed with similar melting temperatures were studied in solution and when one strand was bound to 5 μm silica microspheres. The rates of hybridization followed second-order kinetics and were measured spectrophotometrically in solution and fluorometrically in the solid phase. In solution, the rate constants for the model sequences varied by almost two orders of magnitude, with a decrease in the rate constant with increasing amounts of secondary structure in the target sequence. The random sequences also showed over an order of magnitude difference in the rate constant. In contrast, the hybridization experiments in the solid phase with the same model sequences showed almost no change in the rate constant. Solid phase rate constants were approximately three orders of magnitude lower compared with the solution phase constants for sequences with little or no single-stranded structure. Sequences with a known secondary structure yielded solution phase rate constants as low as 3 × 103 M−1 s−1 with solid phase rate constants for the same sequences measured at 2.5 × 102 M−1 s−1. The results from these experiments indicate that (i) solid phase hybridization occurs three orders of magnitude slower than solution phase, (ii) trends observed in structure-dependent kinetics of solution phase hybridization may not be applicable to solid phase hybridization and (iii) model probes with known secondary structure decrease reaction rates; however, even random sequences with no known internal single-stranded structure can yield a broad range of reaction rates.  相似文献   

14.
We have determined the gel electrophoretic behavior of closed circular plasmid pSM1 DNA (5420 bp) as a function of both temperature and of linking number (Lk). At temperatures below 37 degrees, the electrophoretic mobility first increases, then becomes constant as Lk is decreased below that of the relaxed closed DNA. As the temperature is increased above 37 degrees the electrophoretic mobility first increases as Lk decreases and then varies in a cyclic manner with further decreases in Lk. As the temperature is increased over the range 37 degrees - 65 degrees the cyclic behavior is manifested at progressively smaller decreases in Lk and the amplitude of the cycles increases. We interpret the results in terms of the early melting of superhelical DNA, in which the free energy associated with superhelix formation is progressively transferred to local denaturation. Using a two state approximation, we estimate the free energy change in the first cyclic transition to be 35 Kcal/mole DNA at 37 degrees and to decrease linearly with temperature. The free energy becomes equal to zero at a temperature of 71.6 degrees, which lies within 3 degrees of the melting temperature for the corresponding nicked circular DNA. From the slope of this relationship we estimate the apparent entropy and enthalpy of the first mobility transition to be 6.0 Kcal/mole base pair and 17.3 cal/mole base pair/degree, values consistent with duplex melting.  相似文献   

15.
The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.  相似文献   

16.
A study of DNA melting in concentrated water-alcohol solutions   总被引:1,自引:0,他引:1  
The DNA melting profiles with high resolution have been studied for conditions corresponding to the B and A conformations of DNA in water-alcohol solutions. The melting profiles of the A-form and B-form DNA, their mean melting temperatures and melting range width were found to differ. DNA was shown to be heterogeneous in respect of the B-A transition, the GC-rich regions more readily converting into the A form than AT-rich ones. The presence of boundaries between the A and B sections within the transition zone did not smooth off the fine structure of melting profiles.  相似文献   

17.
Expressions for the partition function Q (T) of DNA hairpins are presented. Calculations of Q (T), in conjunction with our previously reported numerically exact algorithm [T. M. Paner, M. Amaratunga, M. J. Doktycz, and A. S. Benight (1990) Biopolymers, 29, 1715-1734], yield a numerical method to evaluate the temperature dependence of the transition enthalpy, entropy, and free energy of a DNA hairpin directly from its optical melting curve. No prior assumptions that the short hairpins melt in a two-state manner are required. This method is then applied in a systematic manner to investigate the stability of the six basepair duplex stem 5'-GGATAC-3' having four-base dangling single-strand ends with the sequences (XY)2, where X, Y = A, T, G, C, on the 5' end and a T4 loop on the 3' end. Results show that all dangling ends of the sample set stabilize the hairpin against melting. Increases in transition temperatures as great as 4.0 degrees C above the blunt-ended control hairpin were observed. The hierarchy of the hairpin transition temperatures is dictated by the identity of the first base of the dangling end adjoining the duplex in the order: purine greater than T greater than C. Calculated melting curves of every hairpin were fit to experimental curves by adjustment of a single parameter in the numerically exact theoretical algorithm. Exact fits were obtained in all cases. Experimental melting curves were also calculated assuming a two-state melting process. Equally accurate fits of all dangling-ended hairpin melting curves were obtained with the two-state model calculation. This was not the case for the melting curve of the blunt-ended hairpin, indicating the presence of a four-base dangling-end drives hairpin melting to a two-state process. Q (T) was calculated as a function of temperature for each hairpin using the theoretical parameters that provided calculated curves in exact agreement with the experimentally obtained optical melting curves. From Q (T), the temperature dependence of the transition enthalpy delta H, entropy delta S, and free energy delta G were calculated for every hairpin providing a quantitative assessment of the effects of dangling ends on hairpin thermodynamics. Comparisons of our results are made with those of the Breslauer group [M. Senior, R. A. Jones, and K. J. Breslauer (1988) Biochemistry 27, 3879-3885] on the T2 5' dangling-ended d(GC)3 duplexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The solubility of κ-carrageenan in low water-content solvents is important in food applications where complete solubilization is required for proper development of structure and rheology. The effect of glycerol and sorbitol on the gelation and conformational helix transition of κ-carrageenan was studied using rheology and optical rotation. Glycerol/water solutions from 0–100 wt% glycerol and sorbitol solutions from 0–100% saturation were studied over the temperature range 0–90°C. The results were analyzed in terms of solvent solubility parameters, water chemical potential, and solvent dielectric constant. Effective cohesive energy density parameters could not be inferred for the carrageenan, but the gelation temperature could be correlated with solvent dielectric constant. Hydrogen bonding interactions control the carrageenan helix formation. The cohesive energy density as a measure of solvent quality accounts for hydrogen bonding but not Coulombic interactions, and the Coulombic interactions scale on dielectric constant. This indicates the dominant role of electrostatics on the gelation process.  相似文献   

19.
Abstract

The DNA melting profiles with high resolution have been studied for conditions corresponding to the B and A conformations of DNA in water-alcohol solutions. The melting profiles of the A-form and B-form DNA, their mean melting temperatures and melting range width were found to differ. DNA was shown to be heterogeneous in respect of the B-A transition, the GC-rich regions more readily converting into the A form than AT-rich ones. The presence of boundaries between the A and B sections within the transition zone did not smooth off the fine structure of melting profiles.  相似文献   

20.
DNA adducts with antioxidant flavonoids: morin, apigenin, and naringin   总被引:1,自引:0,他引:1  
Flavonoids have recently attracted a great interest as potential therapeutic drugs against a wide range of free-radical-mediated diseases. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. While the antioxidant activity of these natural polyphenolic compounds is well known, their bindings to DNA are not fully investigated. This study was designed to examine the interactions of morin (Mor), naringin (Nar), and apigenin (Api) with calf thymus DNA in aqueous solution at physiological conditions, using constant DNA concentration (6.25 mM) and various drug/DNA(phosphate) ratios of 1/40 to 1. FTIR and UV-Vis spectroscopic methods were used to determine the ligand binding modes, the binding constant, and the stability of DNA in flavonoid-DNA complexes in aqueous solution. Spectroscopic evidence shows both intercalation and external binding of flavonoids to DNA duplex with overall binding constants of K(morin) = 5.99 x 10(3) M(-1), K(apigenin) = 7.10 x 10(4) M(-1), and K(naringin) = 3.10 x 10(3) M(-1). The affinity of ligand-DNA binding is in the order of apigenin > morin > naringin. DNA aggregation and a partial B- to A-DNA transition occurs upon morin, apigenin, and naringin complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号