首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell therapy and regenerative medicine are potentially two of the most exciting aspects of the novel therapeutic methods currently under development. However, these treatments present a number of important biosafety issues, like the possible transmission of microorganisms to the recipients. The most common potential form of contamination in these cell products is by bacteria (including Mycoplasma), yeast and fungi. In our study, 32 stem cell lines and feeder cell lines were analysed. There were 19 contaminated cell passages (12%). The main contaminants were gram positive cocci and Mycoplasma species, followed by gram negative rods and gram positive rods. The Mycoplasma contamination rate was 4%. Stem cell banks and other research centres aim to screen all processed stem cell lines for these microorganisms, and to assure that no contaminants are introduced in the banking procedures. It is a standard part of current good practice in stem cell banks to carry out routine microbiological controls of the stem cell lines and to work in a controlled environment to reduce the probability of contamination in the final product.  相似文献   

2.
AIM: The aim of this study was to evaluate the main environmental microbial contaminants of the clean rooms in our stem cell bank. METHODS AND RESULTS: We have measured the microbial air contamination by both passive and active air sampling and the microbial monitoring of surfaces by means of Rodac plates. The environmental monitoring tests were carried out in accordance with the guidelines of European Pharmacopeia and US Pharmacopeia. The micro-organisms were identified by means of an automated system (VITEK 2). During the monitoring, the clean rooms are continually under good manufacturing practices specifications. The most frequent contaminants were Gram-positive cocci. CONCLUSIONS: The main contaminants in our stem cell bank were coagulase-negative staphylococci and other opportunistic human pathogens. In order to assure the levels of potential contamination in both embryonic and adult stem cell lines, a continuous sampling of air particles and testing for viable microbiological contamination is necessary. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first evaluation of the environmental contaminants in stem cell banks and can serve as initial evaluation for these establishments. The introduction of environmental monitoring programmes in the processing of stem cell lines could diminish the risk of contamination in stem cell cultures.  相似文献   

3.
We have developed an efficient direct DNA transfer procedure for the facile engineering of Catharanthus roseus cell cultures. Particle bombardment of callus derived from leaf material permitted rapid selection and establishment of transgenic cell lines. Transgenic callus were recovered at a frequency of between 60–80% of total callus bombarded with a single plasmid. Bombardment using two separate plasmids resulted in a 25–60% frequency of transgenic callus recovered, up to 90% containing both input plasmids. Between 10–20 g FW of transgenic material was produced within 3 months of bombardment, providing sufficient material for molecular and biochemical analyses. We developed two complementary systems allowing selection on either hygromycin or kanamycin to permit re-transformation using plasmids carrying additional genes of interest. Use of leaf tissue as explant for transformation avoids time-consuming and labor intensive procedures involving suspension cultures. We provide molecular data on integration and expression of selected and non selected transgenes in a number of transgenic callus lines. Transgene integration events for co-transformed plasmids were relatively simple, occurring at one or two sites in the genome for most of the lines we analysed. Molecular analysis of callus resulting from co-transformation experiments using two different plasmids revealed that in nine of 10 putative transgenic lines we selected for analysis both plasmids had integrated into the genome. RNA gel-blot analysis and histochemical staining showed that an unselected transgene, gusA, was expressed in seven of the ten lines we analysed.  相似文献   

4.
The application of PAT for in‐line monitoring of biopharmaceutical manufacturing operations has a central role in developing more robust and consistent processes. Various spectroscopic techniques have been applied for collecting real‐time data from cell culture processes. Among these, Raman spectroscopy has been shown to have advantages over other spectroscopic techniques, especially in aqueous culture solutions. Measurements of several process parameters such as glucose, lactate, glutamine, glutamate, ammonium, osmolality and VCD using Raman‐based chemometrics models have been reported in literature. The application of Raman spectroscopy, coupled with calibration models for amino acid measurement in cell cultures, has been assessed. The developed models cover four amino acids important for cell growth and production: tyrosine, tryptophan, phenylalanine and methionine. The chemometrics models based on Raman spectroscopy data demonstrate the significant potential for the quantification of tyrosine, tryptophan and phenylalanine. The model for methionine would have to be further refined to improve quantification.  相似文献   

5.
Xiong F  Gao H  Zhen Y  Chen X  Lin W  Shen J  Yan Y  Wang X  Liu M  Gao Y 《Cytotechnology》2011,63(6):621-631
Cultured neural stem cells (NSCs) provide a powerful means for investigating central nervous system disease, neuron development, differentiation, and regeneration. To obtain sufficient neurospheres, subculturing is essential following establishment of the primary NSC culture. Passaging the primary neurospheres is a key issue that is often ignored. We evaluated the influence of different passaging schedules on primary cultured NSCs. Passaging was performed on day 5, 7 or 9. We observed more neurospheres with diameters of 200–250 μm on day 7 than on day 5 or 9. Prolonging the time of primary culture reduced the cell metabolic activity by the MTT assay and cell proliferation by colony-forming assay and the differentiation to neurons from cells at P2 and later decreased. Additionally, more cells were in G0/G1 phase, and higher expression of p16 INK4a and lower expression of cyclin D1 was found when the time of primary culture was prolonged to 9 days compared to 7-days cultures. Thus, in this study, we established that the optimal time for subculturing aggregated NSCs was on day 7 based on the primary culture.  相似文献   

6.
Mass spectrometry: A tool for on-line monitoring of animal cell cultures   总被引:1,自引:0,他引:1  
The magnetic sector mass spectrometer is able to detect oxygen uptake and carbon dioxide production rates from animal cell cultivations performed in 101 biorectors. Such data have not been available with the use of classic exhaust gas analysis applying paramagnetic analyzers and infra-red sensors due to the insensitivity of the apparatus available. In the course of the present work we were able to demonstrate, that the oxygen uptake rate correlates to the number of viable cells. Additionally oxygen uptake rates supplied on-line information about the actual physiology of the cells: When the rates changed during the cultivation process, this immediately indicated the occurrence of limitations of components in the medium. The information could be useful in timing key events, such as performing splits or harvesting the bioreactor.Abbreviations OUR oxygen uptake rate - CDPR carbon dioxide production rate - RQ respiratory quotient This publication is dedicated to the 65 th birthday of Prof. Dr. F. Wagner, University of Braunschweig.  相似文献   

7.
An improved culture system for plant cells that employs filter paper resting on polyurethane saturated with liquid medium is described. It combines a simplified version of the system outlined by Weber and Lark [1979, Theor Appl Genet 55: 81–86] with the method of growth estimation described by Horsch et al. [1980, Can J Bot 58: 2402–2406]. The growth of plated cells or callus can be conveniently monitored through repeated non-destructive fresh weight measurements of the filter paper and adhering cells, thereby allowing the construction of a complete growth curve over the course of an experiment. Experiments with 3 Nicotiana genotypes (N. plumbaginifolia Viv., N. tabacum L. SC 58 and N. tabacum WI 38) and 3 Vitis vinifera L. genotypes (Chenin Blanc, Dogridge and White Riesling) clearly demonstrate higher growth rates of plated cells on polyurethane supports compared with agar. Further experiments with N. plumbaginifolia illustrate the use of polyurethane supports for culturing cells at low pH (4.0) and the recovery of spent medium for monitoring changes in pH. These features will greatly facilitate quantitative studies of mineral nutrition and metal toxicity in cultured cells. Polyurethane supports also allow the incorporation of conditioned medium or feeder cells to support the growth of cells at low densities and facilitate the rapid recovery of variant cells.  相似文献   

8.
The need for successful ex-vivo expansion and directed differentiation of haematopoietic stem cells (HSCs) for therapeutic applications has increased over the past decade. Haematopoietic cell cultures are complex and full characterisation of the process environment has yet to be achieved. The complexity and transient nature of HSC cultures make the identification, maintenance and control of optimal operating conditions challenging. Application of real-time, on-line monitoring techniques and process control strategies enhances the ability to operate bioprocesses of desired reproducibility and high product quality. In this review, we discussed the methods by which in vitro culture information necessary for bioprocess control may be obtained, including process considerations, monitoring and analytical tools, and design of experiments (DOE). The successful application of these tools may result in time- and cost-effective cultures for directed differentiation and expansion of haematopoietic components intended for clinical use.  相似文献   

9.
As Escherichia coli (E. coli) is well defined with respect to its genome and metabolism, it is a favored host organism for recombinant protein production. However, many processes for recombinant protein production run under suboptimal conditions caused by wrong or incomplete information from an improper screening procedure, because appropriate on-line monitoring systems are still lacking. In this study, the oxygen transfer rate (OTR), determined on-line in shake flasks by applying a respiration activity monitoring system (RAMOS) device, was used to characterize the metabolic state of the recombinant organisms. Sixteen clones of E. coli SCS1 with foreign gene sequences, encoding for different target proteins, were cultivated in an autoinduction medium, containing glucose, lactose, and glycerol, to identify relationships between respiration activity and target protein production. All 16 clones showed a remarkably different respiration activity, biomass, and protein formation under induced conditions. However, the clones could be classified into three distinct types, and correlations could be made between OTR patterns and target protein production. For two of the three types, a decrease of the target protein was observed, after the optimal harvest time had passed. The acquired knowledge was used to modify the autoinduction medium to increase the product yield. Additional 1.5 g/L glucose accelerated the production process for one clone, shifting the time point of the maximal product yield from 24 to 17 h. For another clone, lactose addition led to higher volumetric product yields, in fact 25 and 38% more recombinant protein for 2 and 6 g/L additional lactose, respectively.  相似文献   

10.
There is increasing evidence that the growth of human tumours is driven by a small proportion of tumour stem cells with self-renewal properties. Multiplication of these cells leads to loss of self-renewal and after division for a finite number of times the cells undergo programmed cell death. Cell cycle times of human cancers have been measured in vivo and shown to vary in the range from two days to several weeks, depending on the individual. Cells cultured directly from tumours removed at surgery initially grow at a rate comparable to the in vivo rate but continued culture leads to the generation of cell lines that have shorter cycle times (1–3 days). It has been postulated that the more rapidly growing sub-population exhibits some of the properties of tumour stem cells and are the precursors of a slower growing sub-population that comprise the bulk of the tumour. We have previously developed a mathematical model to describe the behaviour of cell lines and we extend this model here to describe the behaviour of a system with two cell populations with different kinetic characteristics and a precursor–product relationship. The aim is to provide a framework for understanding the behaviour of cancer tissue that is sustained by a minor population of proliferating stem cells.  相似文献   

11.
Searching for process information in the aroma of cell cultures   总被引:1,自引:0,他引:1  
Aroma emissions from living cells can provide valuable information about the metabolic and physiological condition of those cells. Electronic noses are chemical gas-sensor arrays that use artificial neural network models to evaluate aromas. They can interpret the complex aroma information emitted from cultures of bacteria, yeast cells and animal cells. Potential applications for electronic noses range from medical diagnosis to industrial bioprocessing.  相似文献   

12.
The major problem in cell therapy is the possibility of viral or bacterial infection and immune reactions. Therefore, it is expected of culture cells which are intended to be re-implanted with autologous serum rather than conventional bovine serum. Cell therapy with human mesenchymal stem cells (hMSC), differentiating to various cells, is thought to be curative. To culture hMSC with human autologous serum (HAS) and re-implant them for cell therapy, we developed a completely closed bag system separating serum, comparing proliferation and multipotency of hMSC cultured in HAS with those in foetal calf serum (FCS). HAS was simply, safely and efficiently obtained with the developed closed bag system. Cell proliferation of hMSC cultured in HAS was greater than that in FCS. hMSC, exposed to the defined induction medium containing HAS as well as FCS, differentiated into osteoblasts and adipocytes. These findings suggest that HAS obtained with the developed closed bag system is advantageous in a point of decrease in risk of virus or bacterial infection and foreign protein contamination and enhancement of proliferation of hMSC.  相似文献   

13.
Biofilms are ubiquitous and play an essential role in both environmental processes and hospital infections. Standard methods are not capable of quantifying biomass concentration in dilute suspensions. Furthermore, standard techniques cannot differentiate biomass composition. In this study, a user-friendly technique was developed for measuring biomass cell and polymer content in detached biofilms using a standard coulter counter. The method was demonstrated for an environmentally relevant strain of Pseudomonas aeruginosa (Schroeter) Migula grown in a bioreactor and also for a medically relevant strain of P. aeruginosa (PAO1) grown on standard growth pegs. Results were compared and validated by standard assays, including EPA method 1684 for measuring biomass, microscopic direct counts, and a crystal violet staining assay. The minimum detection limit for the coulter counter method (0.07 mg-biomass L− 1) was significantly lower than the EPA method 1684 (1.9 ± 0.4 mg/L) and the crystal violet assay (1.1 ± 0.2 mg L− 1). However, the coulter counter method is limited to dilute biomass samples (below 204 ± 16 mg L− 1) due to clogging of the aperture tube. While biomass measurements are useful, the major advantage of the coulter counter method is the ability to directly determine EPS, cell, and aggregate fractions after mild chemical treatment. The rapid technique (4–5 min per sample) was used to measure biomass fractions in dispersed P. aeruginosa (Schroeter) and PAO1 biofilms. This technique will be critical for understanding biofilm formation/dispersal.  相似文献   

14.
There is an increased interest from the vaccine industry to use mammalian cell cultures for influenza vaccine manufacturing. Therefore, it became important to study the influenza infection mechanism, the viral–host interaction, and the replication kinetics from a bioprocessing stand point to maximize the influenza viral production yield in cell culture. In the present work, influenza replication kinetics was studied in HEK293 cells. Two infection conditions were evaluated, a low (0.01) and a high multiplicity of infection (1.0). Critical time points of the viral production cycle (infection, protein synthesis, viral assembly and budding, viral release, and host‐cell death) were identified in small‐scale cell cultures. Additionally, cell growth, viability, and viral titers were monitored in the viral production process. The infection state of the cultivated cell population was assessed by influenza immunolabeling throughout the culture period. Influenza virus production kinetics were also on‐line monitored by dielectric spectroscopy and successfully correlated to real‐time capacitance measures. Overall, this work provided insights into the mechanisms associated with the infection of human HEK293 cell line by the influenza virus and demonstrated, once again, the usefulness of multifrequency scanning permittivity for in‐line monitoring and supervision of cell‐based viral production processes. Published 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

15.
This study proposes an easy to use in situ device, based on multi-frequency permittivity measurements, to monitor the growth and death of attached Vero cells cultivated on microporous microcarriers, without any cell sampling. Vero cell densities were on-line quantified up to 106 cell mL−1. Some parameters which could potentially impact Vero cell morphological and physiological states were assessed through different culture operating conditions, such as media formulation or medium feed-harvest during cell growth phase. A new method of in situ cell death detection with dielectric spectroscopy was also successfully implemented. Thus, through permittivity frequency scanning, major rises of the apoptotic cell population in bioreactor cultures were detected by monitoring the characteristic frequency of the cell population, fc, which is one of the culture dielectric parameters. Both cell density quantification and cell apoptosis detection are strategic information in cell-based production processes as they are involved in major events of the process, such as scale-up or choice of the viral infection conditions. This new application of dielectric spectroscopy to adherent cell culture processes makes it a very promising tool for risk-mitigation strategy in industrial processes. Therefore, our results contribute to the development of Process Analytical Technology in cell-based industrial processes.  相似文献   

16.
The importance of mammalian cell cultures for biotechnological production processes is steadily increasing, despite the high demands of these organisms on their culture conditions. Efforts towards a more efficient bioprocess generally concentrate on maximizing the culture's life time, the cell number, and the product concentration. Here recombinant BHK 21 c13 cells are used to produce rh-AT III, an anticoagulant of high therapeutic value. The influence of the process mode (batch, repeated batch, continuous perfusion) and the process temperature (30°C vs. 37°C) on the above mentioned parameters is investigated. It is possible to increase the length of the culture from 140 h (batch) to more than 500 h (continuous perfusion culture), while concomitantly increasing the cell density from 0.72 106/ml (batch) to 2.27 106/ml (repeated batch) and 2.87 106/ml (continuous perfusion culture). The accumulation of toxic metabolites, such as lactate, can be curtailed by reducing the bioreactor temperature from 37°C to 30°C during the later part of the exponential growth phase. Fast and reliable product monitoring became essential during process optimization. Capillary zone electrophoresis (CZE) in uncoated fused silica capillaries was studied for that purpose and compared to the standard ELISA. Under optimized conditions an AT III quantification could be done within 2 min with CZE. The detection limit was 5 g/ml. A relative standard deviation of less than 0.9% was calculated. The detection limit could be lowered by one order of magnitude by using a two dimensional system, where an liquid chromatographic (LC) system is coupled to the CZE. Concomitantly the resolution is improved. The two-dimensional analysis required 5 min. Membrane adsorbers (MA) were used as stationary phase in the LC-system, to allow the application of high flow rates (5–10 ml/min). The correlation between the LC-CZE analysis and the standard AT III-ELISA was excellent, with r2: 0.965. Using the assay for at line product monitoring, it is shown, that the process temperature is of no consequence for the productivity whereas the process mode strongly influences this parameter.  相似文献   

17.
Large quantities of free protein in the environment and other bioaerosols are ubiquitous throughout terrestrial ground level environments and may be integrative indicators of ecosystem status. Samples of ground level bioaerosols were collected from various ecosystems throughout Ecuador, including pristine humid tropical forest (pristine), highly altered secondary humid tropical forest (highly altered), secondary transitional very humid forest (regrowth transitional), and suburban dry montane deforested (suburban deforested). The results explored the sensitivity of localized aerosol protein concentrations to spatial and temporal variations within ecosystems, and their value for assessing environmental change. Ecosystem specific variations in environmental protein concentrations were observed: pristine 0.32 ± 0.09 μg/m3, highly altered 0.07 ± 0.05 μg/m3, regrowth transitional 0.17 ± 0.06 μg/m3, and suburban deforested 0.09 ± 0.04 μg/m3. Additionally, comparisons of intra-environmental differences in seasonal/daily weather (dry season 0.08 ± 0.03 μg/m3 and wet season 0.10 ± 0.04 μg/m3), environmental fragmentation (buffered 0.19 ± 0.06 μg/m3 and edge 0.15 ± 0.06 μg/m3), and sampling height (ground level 0.32 ± 0.09 μg/m3 and 10 m 0.24 ± 0.04 μg/m3) demonstrated the sensitivity of protein concentrations to environmental conditions. Local protein concentrations in altered environments correlated well with satellite-based spectral indices describing vegetation productivity: normalized difference vegetation index (NDVI) (r2 = 0.801), net primary production (NPP) (r2 = 0.827), leaf area index (LAI) (r2 = 0.410). Moreover, protein concentrations distinguished the pristine site, which was not differentiated in spectral indices, potentially due to spectral saturation typical of highly vegetated environments. Bioaerosol concentrations represent an inexpensive method to increase understanding of environmental changes, especially in densely vegetated ecosystems with high canopies or in areas needing high spatial and temporal resolution. Further research to expand understanding of the applicability of bioaerosol concentrations for environmental monitoring is supported by this pilot study.  相似文献   

18.
19.
Glucose and lactate profiles in Chinese hamster ovary cell cultures were accurately monitored in real time and in situ during three bioreactor batch cultures lasting 11,15, and 15 days performed within a 60-day period. Monitoring was accomplished using in situ-collected mid-infrared spectra analyzed with a priori one-time established partial least-squares regression models. The robustness of the technique was demonstrated by application of these models without modification after 2.3 years. Neither recalibration nor instrument maintenance was required during the 2.3-year period, except for the daily filling of liquid nitrogen for detector cooling during operation. The lactate calibration model yielded accurate absolute concentration estimations during each of the batch cultures with standard errors of estimate from 1 to 3 mM. The a priori-established glucose calibration model yielded concentration estimations with an off-set, which was constant throughout a culture. Adjustment of the off-set before inoculation resulted in accurate concentration estimations with Standard errors of estimate of approximately 1 mM for each of the bioreactor cultures. Sensitivity in detecting differences of 0.5 mM and selectivity against variation of one metabolite while the other was kept constant was demonstrated during standard additions of either glucose or lactate. The sensor system proved to be reliable, simple, accurate, sterile, and capable of long-term automatic operation and is considered to be mature enough to be routinely applied for in situ (on-line) cell culture monitoring.  相似文献   

20.
Mesenchymal stem cells (MSCs) have recently made significant progress with multiple clinical trials targeting modulation of immune responses, regeneration of bone, cartilage, myocardia, and diseases like Metachromatic leukodystrophy and Hurler syndrome. On the other hand, the use of human embryonic and induced pluripotent stem cells (hPSCs) in clinical trials is rather limited mainly due to safety issues. Only two clinical trials, retinal pigment epithelial transplantation and treatment of spinal cord injury were reported. Cell doses per treatment can range between 50,000 and 6 billion cells. The current 2-dimensional tissue culture platform can be used when low cell doses are needed and it becomes impractical when doses above 50 million are needed. This demand for future cell therapy has reinvigorated interests in the use of the microcarrier platform for generating stem cells in a scalable 3-dimensional manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号