首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of cell-free extracts from PC12 cells with [32P]ATP leads to the phosphorylation of a 100,000-dalton protein. In extracts from cells treated with nerve growth factor, the labeling of the 100,000-dalton protein is substantially and selectively reduced. Direct quantitation indicates that the reduction is a minimum of 30-50% in the various experiments. The decrease is evident after as little as 15 min of nerve growth factor treatment, and disappears within 2 h after the removal of nerve growth factor. The decrease is dose dependent; a complete response is seen after treatment with 10 ng of nerve growth factor/ml. Some decrease in phosphorylation is also seen after treatment of the cells with epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, or 5'-N-ethylcarboxamideadenosine, a potent adenosine receptor agonist, but not after treatment with insulin. The phosphorylation of the 100,000-dalton protein, in extracts from either control or nerve growth factor-treated cells, leads almost exclusively to the formation of phosphothreonine. The addition of equal amounts of extract from untreated cells and extract from nerve growth factor-treated cells produces a level of phosphorylation exactly intermediate between those of the two extracts used separately, indicating the absence of a soluble kinase inhibitor. The data suggest that nerve growth factor treatment produces either a covalent inhibition or a physical removal of the kinase for the 100,000-dalton protein.  相似文献   

2.
Nerve growth factor (NGF) rapidly stimulates the phosphorylation of a 250 kDa cytoskeletally-associated protein (pp250) by a protein kinase which is also associated with structural elements of the cell. We have solubilized these proteins and demonstrated that NGF-stimulated phosphorylation can be observed in cell free extracts of cytoskeletons from NGF-treated PC12 cells. The pp250 substrate and the 250-kinase were solubilized from PC12 cytoskeletons by treatment with 2 M urea. Phosphorylation of pp250 was maximally stimulated following treatment of the cells for 5 min with NGF. This effect was transient, diminishing with longer exposure of the cells to hormone. The 250-kinase preferred Mn2+ over Mg2+ and was inhibited by both Na+ and K+. The phosphorylation of pp250 was not affected by Ca2+. Upon fractionation of the urea-soluble cytoskeletal proteins by gel filtration, the 250-kinase eluted in two peaks; one peak of enzyme activity coeluting with the pp250 substrate, and a second peak of enzyme activity eluting with an apparent Mr of approximately 60 kDa. Treatment of the PC12 cells with the phorbol ester TPA also stimulated the phosphorylation of pp250, although this effect was not as great as that produced by NGF. This cell free system should be a valuable tool in the investigation of the mechanisms of NGF action.Special issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.  相似文献   

3.
Nerve growth factor-induced decrease in the calpain activity of PC12 cells   总被引:6,自引:0,他引:6  
PC12 cells are a nerve growth factor-responsive clone derived from a rat pheochromocytoma. Treatment with nerve growth factor causes the cells to differentiate. One of the hallmarks of this differentiation is the generation of neurites. PC12 cells contain both calpain I and calpain II; about 90% of the total calpain activity is due to calpain II. Treatment of the cells with nerve growth factor causes a time-dependent decrease in calpain activity, more than 50% being lost over a 5-day period. Both the decrease in calpain activity and the growth of neurites are reversible upon the removal of nerve growth factor from the cultures. Agents other than nerve growth factor that cause neurite outgrowth, such as fibroblast growth factor and dibutyryl cyclic AMP, also cause a decrease in calpain activity. Calpain levels, as detected with immunoblotting or immunohistochemistry, show no decrease. Removal of calpastatin, the endogenous inhibitor of the calpains, by phenyl-Sepharose chromatography increases the calpain activity of extracts from both control and nerve growth factor-treated cells and brings the activity in the extracts from treated cells up to the activity in those from controls. Calpastatin-containing fractions from extracts of nerve growth factor-treated cells inhibit more calpain activity than do comparable fractions from control cells. These studies suggest that nerve growth factor causes a decrease in the activity of calpain in morphologically differentiating PC12 cells by causing an increase in the activity of calpastatin.  相似文献   

4.
Synaptosomal-associated protein of 25 kDa (SNAP-25), a t-SNARE protein essential for neurotransmitter release, is phosphorylated at Ser187 following activation of cellular protein kinase C by treatment with phorbol 12-myristate 13-acetate. However, it remains unclear whether neuronal activity or an endogenous ligand induces the phosphorylation of SNAP-25. Here we studied the phosphorylation of SNAP-25 in PC12 cells using a specific antibody for SNAP-25 phosphorylated at Ser187. A small fraction of SNAP-25 was phosphorylated when cells were grown in the absence of nerve growth factor (NGF). A brief treatment with NGF that was enough to activate the mitogen-activated protein kinase signal transduction pathway did not increase the phosphorylation of SNAP-25; however, phosphorylation was up-regulated after a prolonged incubation with NGF. Up-regulation was transitory, and maximum phosphorylation (a fourfold increase over basal phosphorylation) was achieved between 36 and 48 h after the addition of NGF. Immunofluorescent microscopy showed that SNAP-25 was localized primarily in the plasma membrane, although a significant population was also present in the cytoplasm. Quantitative microfluorometry revealed that prolonged treatment with NGF resulted in a preferential localization of SNAP-25 in the plasma membrane. A mutational study using a fusion protein with green fluorescent protein as a tag indicated that the point mutation of Ser187 to Ala abolished the NGF-dependent relocalization. A population of SNAP-25 in the plasma membrane was not increased by a point mutation at Ser187 to Glu; however, it was increased by prolonged treatment with NGF, indicating that the SNAP-25 phosphorylation is essential, but not sufficient, for the NGF-induced relocation to the plasma membrane. Our results suggest a close temporal relationship between the up-regulation of SNAP-25 phosphorylation and its relocation, and NGF-induced differentiation of PC12 cells.  相似文献   

5.
PC12 cells, which differentiate morphologically and biochemically into sympathetic neruonlike cells in response to nerve growth fact, also respond to epidermal growth factor. The response to epidermal growth factor is similar in certain respects to the response to nerve growth fact. Both peptides produce rapid increases in cellular adhesion and 2-deoxyglucose uptake and both induce ornithine decarboxylase. But nerve growth factor causes a decreased cell proliferation and a marked hypertrophy of the cells. In contrast, epidermal growth factor enhances cell proliferation and does not cause hypertrophy. Nerve growth factor induces the formation of neuritis; epidermal growth factor does not. When both factors are presented simultaneously, the cells form neurites. Furthermore, the biological response to epidermal growth fact, as exemplified by the induction of ornithine decarboxylase, is attenuated by prior treatment of the cells with nerve growth factor. PC12 cells have epidermal growth factor receptors. The binding of epidermal growth factor to these receptors is rapid and specific, and exhibits an equilibrium constant of 1.9 x 10(-9) M. Approximately 80,000 receptors are present per cell, and this number is independent of cell density. Treatment of the cells with nerve growth factor reduces the amount of epidermal growth factor binding by at least 80 percent. The decrease in receptor binding begins after approximately 12-18 h of nerve growth factor treatment and is complete within 3 d. Scratchard plots indicate that the number of binding sites decreases, not the affinity of the binding sites for epidermal growth factor.  相似文献   

6.
Insertional and point mutations in the gene encoding the prion protein (PrP) are responsible for familial prion diseases. We have previously generated lines of Chinese hamster ovary cells that express PrP molecules carrying pathogenic mutations, and found that the mutant proteins display several biochemical properties reminiscent of PrP(Sc), the infectious isoform of PrP. To analyze the properties and effects of mutant PrP molecules expressed in cells with a neuronal phenotype, we have constructed stably transfected lines of PC12 cells that synthesize a PrP molecule carrying a nine-octapeptide insertion. We report here that this mutant PrP acquires scrapie-like properties, including detergent insolubility, protease resistance, and resistance to phospholipase cleavage of its glycolipid anchor. A detergent-insoluble and phospholipase-resistant form of the mutant protein is also released spontaneously into conditioned medium. These scrapie-like biochemical properties are quantitatively similar to those seen in Chinese hamster ovary cells and are not affected by differentiation of the PC12 cells into sympathetic neurons by nerve growth factor. Moreover, there is no detectable effect of mutant PrP expression on the morphology or viability of the cells in either the differentiated or undifferentiated state. These results indicate that conversion of mutant PrP into a PrP(Sc)-like form does not depend critically on the cellular context, and they suggest that mutant PrP expressed in cultured cells, even those having the phenotype of differentiated neurons, is not neurotoxic.  相似文献   

7.
Li  R; Kong  Y; Ladisch  S 《Glycobiology》1998,8(6):597-603
The PC12 rat pheochromocytoma cell line is an established model for nerve growth factor (NGF)-induced neurite formation. It has been shown that when gangliosides are added to the culture medium of PC12 cells, NGF-induced neurite formation of PC12 cells is enhanced. To determine the role of endogenous cellular gangliosides themselves in NGF-elicited neurite formation, we depleted cellular gangliosides using the new specific glucosylceramide synthase inhibitor, d, l-threo-1-phenyl-2- hexadecanoylamino-3-pyrrolidino-1-propanol.HCl (PPPP). 0.5-2 microM PPPP rapidly inhibited ganglioside synthesis and depletedcellular gangliosides. Nonetheless, over a concentration range of 5-100 ng/ml NGF, in both low serum and serum-free medium, neurite formation was normal. Even pretreatment of PC12 cells for up to 6 days with 1 microM PPPP followed by cotreatment with PPPP and NGF for 10 days, still did not inhibit neurite formation. The conclusion that ganglioside depletion did not block neurite formation stimulated by NGF was supported by the lack of effect of PPPP, under these same conditions, on cellular acetylcholine esterase activity, a neuronal differentiation marker (73.8 +/- 12.1 versus 67.2 +/- 4.6 nmol/min/mg protein at 50 ng/ml NGF; control versus 1 microM PPPP). These findings, together with previous studies showing enhancement of NGF-induced neurite formation by exogenous gangliosides, underscore the vastly different effects that exogenous gangliosides and endogenous gangliosides may have upon cellular functions.   相似文献   

8.
PC12 cells contain at least three immunologically distinct phospholipase C (PLC) isozymes, PLC-beta, PLC-gamma, and PLC-delta. Treatment of PC12 cells with nerve growth factor (NGF) leads to an increase in the phosphorylation of PLC-gamma, but not of PLC-beta or PLC-delta. This increase can be seen in as little as 1 minute. The increased phosphorylation occurs on both serine and tyrosine residues, with the major increase being in the former. This result suggests the possibility that the NGF-dependent increase in phosphoinositide hydrolysis in PC12 cells is due to selective phosphorylation of PLC-gamma by serine and tyrosine protein kinases associated with the NGF receptor.  相似文献   

9.
Nerve growth factor (NGF) and epidermal growth factor (EGF) produce stable alterations in PC12 cells that persist in the detergent-insoluble cytoskeleton, resulting in the phosphorylation of a 250,000-mol-wt cytoskeletally associated protein in situ. Treatment of PC12 cells with NGF or EGF, followed by detergent lysis of the cells and incubation of the resulting cytoskeletons with gamma-32P-ATP, permitted detection of hormonally stimulated, energy-dependent events, which result in the enhanced phosphorylation of a cytoskeletally associated protein as an immediate consequence of receptor occupancy. These events were elicited only upon treatment of intact cells at physiological temperatures. The NGF- and EGF-stimulated events occurred rapidly; however, they were a transient effect of hormone action. NGF and EGF were found to act through independent mechanisms to stimulate the in situ phosphorylation of the 250,000-mol-wt protein, as the effects of NGF, but not EGF, were blocked by methyltransferase inhibitors. The 250,000-mol-wt protein was phosphorylated on serine and threonine residues in response to both NGF and EGF although in somewhat different proportions. The data suggest that the hormone-stimulated labeling of the 250,000-mol-wt protein may be the result of either the direct activation of a protein kinase, the redistribution of the kinase relative to its substrates as a consequence of hormone action, or the coincident occurrence of these events.  相似文献   

10.
High levels of the neuron-specific protein kinase C substrate, B-50 (= GAP43), are present in neurites and growth cones during neuronal development and regeneration. This suggests a hitherto nonelucidated role of this protein in neurite outgrowth. Comparable high levels of B-50 arise in the pheochromocytoma PC12 cell line during neurite formation. To get insight in the putative growth-associated function of B-50, we compared its ultrastructural localization in naive PC12 cells with its distribution in nerve growth factor (NGF)- or dibutyryl cyclic AMP (dbcAMP)-treated PC12 cells. B-50 immunogold labeling of cryosections of untreated PC12 cells is mainly associated with lysosomal structures, including multivesicular bodies, secondary lysosomes, and Golgi apparatus. The plasma membrane is virtually devoid of label. However, after 48-h NGF treatment of the cells, B-50 immunoreactivity is most pronounced on the plasma membrane. Highest B-50 immunoreactivity is observed on plasma membranes surrounding sprouting microvilli, lamellipodia, and filopodia. Outgrowing neurites are scattered with B-50 labeling, which is partially associated with chromaffin granules. In NGF-differentiated PC12 cells, B-50 immunoreactivity is, as in untreated cells, also associated with organelles of the lysosomal family and Golgi stacks. B-50 distribution in dbcAMP-differentiated cells closely resembles that in NGF-treated cells. The altered distribution of B-50 immunoreactivity induced by differentiating agents indicates a shift of the B-50 protein towards the plasma membrane. This translocation accompanies the acquisition of neuronal features of PC12 cells and points to a neurite growth-associated role for B-50, performed at the plasma membrane at the site of protrusion.  相似文献   

11.
Microtubule-associated protein (MAP) kinases form a group of serine/threonine kinases stimulated by various growth factors such as nerve growth factor (NGF) and hormones such as insulin. Interestingly, MAP kinases are thought to participate in a protein kinase cascade leading to cell growth as they have been shown to phosphorylate and activate ribosomal protein S6 kinase. To further evaluate the interactions between the different components of this cascade, we looked at the possible coprecipitation of MAP kinase activator(s) or MAP kinase substrate(s) with MAP kinase. Using antipeptides to the C terminus of the M(r) 44,000 MAP kinase, ERK1, and cell extracts from unstimulated or NGF-treated PC12 cells, we obtained in addition to MAP kinase itself coprecipitation of a protein with a M(r) in the 90,000 range. We further show that this protein is a protein kinase since it becomes phosphorylated on serine residues, after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to a polyvinylidene difluoride membrane. In vitro phosphorylation performed before sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrates NGF-sensitive phosphorylation of this 90-kDa protein on both serine and threonine; the serine phosphorylation is likely to be due to autophosphorylation, and the threonine phosphorylation due to phosphorylation by the copurifying MAP kinase. Furthermore, immunoprecipitation of this 90-kDa protein was obtained with antibodies to S6 kinase II. Finally, using in situ chemical cross-linking, we were able to demonstrate in intact cells the occurrence of an anti-ERK1 immunoreactive species with a molecular mass of approximately 125,000 compatible with a complex between ERK1 and a 90-kDa S6 kinase. Taken together, our observations demonstrate that the 44-kDa MAP kinase is associated, in intact PC12 cells, with a protein kinase which is very likely to be S6 kinase II. In conclusion, our data represent strong evidence for a physiological role of the MAP kinase-S6 kinase cascade in PC12 cells. Finally, our antipeptides provide us with a powerful tool to search for additional physiologically relevant substrates for MAP kinase, a key integrator enzyme for growth factors and hormones.  相似文献   

12.
Excessive brain Mn can produce toxicity with symptoms resembling parkinsonism. This syndrome, called "manganism," correlates with loss of dopamine in the striatum and cell death in the striatum and globus pallidus. A common hypothesis is that cell damage in Mn toxicity is caused by oxidation of important cell components by Mn3+. Determination of the amount of Mn3+ present, under a range of conditions, in neuronal cells and brain mitochondria represents an important step in evaluating the "damage through oxidation by Mn3+ hypothesis." In an earlier paper we used X-ray absorption near-edge structure (XANES) spectroscopy to determine the amount of Mn2+ and Mn3+ in brain mitochondria under a range of conditions. Here we extend the study to investigate the evidence for formation of Mn3+ through oxidation of Mn2+ by ROS in PC12 cells and in PC12 cells induced with nerve growth factor (NGF) to display a phenotype more like that of neurons. Although the results suggest that very small amounts of Mn3+ might be present at low Mn levels, probably in Mn superoxide dismutase, Mn3+ is not stabilized by complex formation in these cells and therefore does not accumulate to detectable amounts.  相似文献   

13.
14.
NGF treatment of PC12 cells results in the rapid activation of MAP2 kinase. We report here that the induction of enzyme activity was correlated with the phosphorylation of MAP2 kinase, detected by metabolic labeling of the enzyme and with anti-phosphotyrosine antibodies. NGF stimulated the phosphorylation of MAP2 kinase on tyrosine, as well as serine and threonine residues. Western blot analysis using a polyclonal anti-phosphotyrosine antibody demonstrated that the tyrosine phosphorylation of MAP2 kinase was maximal within 2 min following NGF exposure and preceded the induction of MAP2 kinase activity. The NGF-stimulated tyrosine phosphorylation of an identified substrate provides direct evidence for the participation of a tyrosine kinase in the mechanism of action of NGF.  相似文献   

15.
《The Journal of cell biology》1985,101(5):1799-1807
Nerve growth factor (NGF) regulates the microtubule-dependent extension and maintenance of axons by some peripheral neurons. We show here that one effect of NGF is to promote microtubule assembly during neurite outgrowth in PC12 cells. Though NGF causes an increase in total tubulin levels, the formation of neurites and the assembly of microtubules follow a time course completely distinct from that of the tubulin induction. The increases in microtubule mass and neurite extension closely parallel 10- and 20-fold inductions of tau and MAP1, proteins shown previously to promote microtubule assembly in vitro. When NGF is removed from PC12 cells, neurites disappear, microtubule mass decreases, and both microtubule-associated proteins return to undifferentiated levels. These data suggest that the induction of tau and MAP1 in response to NGF promotes microtubule assembly and that these factors are therefore key regulators of neurite outgrowth.  相似文献   

16.
The specific intracellular signals initiated by nerve growth factor (NGF) that lead to neurite formation in PC12 rat pheochromocytoma cells are as of yet unclear. Protein kinase C-delta (PKC delta) is translocated from the soluble to the particulate subcellular fraction during NGF-induced-neuritogenesis; however, this does not occur after treatment with the epidermal growth factor, which is mitogenic but does not induce neurite formation. PC12 cells also contain both Ca(2+)-sensitive and Ca(2+)-independent PKC enzymatic activities, and express mRNA and immunoreactive proteins corresponding to the PKC isoforms alpha, beta, delta, epsilon, and zeta. There are transient decreases in the levels of immunoreactive PKCs alpha, beta, and epsilon after 1-3 days of NGF treatment, and after 7 days there is a 2.5-fold increase in the level of PKC alpha, and a 1.8-fold increase in total cellular PKC activity. NGF-induced PC12 cell neuritogenesis is enhanced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) in a TPA dose- and time-dependent manner, and this differentiation coincides with abrogation of the down-regulation of PKC delta and other PKC isoforms, when the cells are treated with TPA. Thus a selective activation of PKC delta may play a role in neuritogenic signals in PC12 cells.  相似文献   

17.
Nerve growth factor (NGF) induces in 2 to 10 min the redistribution of F-actin in rat pheochromocytoma PC12 cells. The NGF specificity of this phenomenon was shown by blocking it with anti-NGF antibodies. We used the rapid F-actin redistribution as an assay to study NGF second messenger systems and their inhibition or activation by specific agents. The results show that the NGF-induced effect on the microfilament system of PC12 cells can be specifically inhibited by lithium chloride and neomycin, inhibitors of the phosphoinositol system, but cannot be mimicked by TPA and acetylcholine, the activators of the phosphoinositol system. An increase in the intracellular concentration of cyclic AMP by addition of dBcAMP (but not dBcGMP) caused rapid F-actin redistribution that nonetheless differed from the NGF-induced effect. Changes in the intracellular calcium level did not have any influence on the microfilament system of PC12 cells. The specificity of the inhibition of NGF-induced effects by methylase inhibitors was questionable, since MTA- or SAH-treated PC12 cells acquired an altered morphology even in the absence of NGF or dBcAMP. Using the microfilament- and microtubule-disrupting drugs cytochalasin B and colchicine, we showed that the microtubule system in PC12 cells is required for the initiation of neurite outgrowth and that microfilament-associated filopodial activity does not appear to be necessary.  相似文献   

18.
Neurotrophins are essential for the development and survival of the catecholaminergic neurons. GTP cyclohydrolase I (GCH) is the first and rate-limiting enzyme in the biosynthesis of 5,6,7,8-tertahydrobiopterin (BH4), the required cofactor for tyrosine hydroxylase. Previously, we reported that TH requires the Ras/mitogen-activated protein kinase kinase (MEK) pathway for its induction by nerve growth factor (NGF). Here, we examined intracellular signals required for NGF-induced expression of the GCH gene in PC12D cells. The activity of GCH was increased up to 5-fold after the NGF treatment, and the increase was repressed by pretreatment with U0126, an MEK1/2 inhibitor, but not with protein kinase A (PKA), phosphoinositide 3-kinase (PI3K), p38 mitogen-activated protein kinase (MAPK), and c-Jun NH2-terminal kinase (JNK) inhibitors. Induction of GCH mRNA by NGF was also abolished by pretreatment with U0126. The human GCH promoter activity was significantly enhanced by NGF treatment. Deletion analysis showed that the 465-bp 5'-flanking region is responsible for NGF-enhanced promoter activity. These data suggest that the Ras-MEK pathway is required for coordinate expression of the GCH and TH genes induced by neurotrophins.  相似文献   

19.
Nerve growth factor (NGF) induces survival and differentiation of the neural crest-derived PC12 cell line. Caveolae are cholesterol-enriched, caveolin-containing plasma membrane microdomains involved in vesicular transport and signal transduction. Here we demonstrate the presence of caveolae in PC12 cells and their involvement in NGF signaling. Our results showed the expression of caveolin-1 by Western blot and confocal immuno-microscopy. The presence of plasma membrane caveolae was directly shown by rapid-freeze deep-etching electron microscopy. Moreover, combined deep-etching and immunogold techniques revealed the presence of the NGF receptor TrkA in the caveolae of PC12 cells. These data together with the cofractionation of Shc, Ras, caveolin, and TrkA in the caveolae fraction supported a role for these plasma membrane microdomains in NGF signaling. To approach this hypothesis, caveolae were disrupted by treatment of PC12 cells with cholesterol binding drugs. Either filipin or cyclodextrin treatment increased basal levels of MAPK phosphorylation. In contrast, pretreatment of PC12 cells with these drugs inhibited the NGF- but not the epidermal growth factor-induced MAPK phosphorylation without affecting the TrkA autophosphorylation. Taken together, our results demonstrate the presence of caveolae in PC12 cells, which contain the high affinity NGF receptor TrkA, and the specific involvement of these cholesterol-enriched plasma membrane microdomains in the propagation of the NGF-induced signal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号