首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
The technique of saturation transfer electron spin resonance has been applied to study the rotational diffusion of spin-labeled Ca2+, Mg2+-dependent ATPase molecules in the membranes of sarcoplasmic reticulum vesicles. Comparison of the present data with those for spin-labeled hemoglobin undergoing isotropic rotation leads to a value of 2 X 10(-4) s for the apparent rotational correlation time at 20 degrees C for the membrane-bound protein. Consideration of the anisotropy of the Brownian rotation of the membrane-bound ATPase suggests that the true correlation time for the expected axial rotation may be somewhat smaller than the apparent value. An Arrhenius plot of the rotational motion shows a break, which is interpreted as indicating the occurrence of a conformational change of the ATPase molecule at about 15 degrees C.  相似文献   

2.
An acid-stable phosphoprotein was formed in a microsomal membrane fraction isolated from bovine aortic smooth muscle in the presence of Mg2+ + ATP and Ca2+. The microsomes also showed Ca2+ uptake activity. The Ca2+ dependence of phosphoprotein formation and of Ca2+ uptake occurred over the same range of Ca2+ concentration (1-10 microM), and resembled similar findings from rabbit skeletal microsomes. The molecular weight of the phosphorylated protein, estimated by SDS-gel electrophoresis, was approximately 105,000. The phosphoprotein was labile at alkaline pH, and its decomposition was accelerated by hydroxylamine. Half-maximum incorporation of 32P in the presence of 10 microM Ca2+ occurred at 60 nM ATP. The calcium-dependent phosphoprotein formation was not affected by 5 mM NaN3, but was inhibited in a dose-dependent fashion by ADP with a 50% inhibition occurring at 180 microM. Fifty mM MgCl2 was required for the maximal phosphorylation. The rate of phosphoprotein decomposition after adding 2 mM EGTA was accelerated by varying the Mg2+ concentration from 10 microM to 3 mM. Alkaline pH (9.0) slowed the rate of phosphoprotein decay. Optimal Ca2+-dependent phosphoprotein occurred at 15 degrees C over a broad pH range (6.4 to 9.0). The activation energy of EGTA-induced phosphoprotein decomposition was 25.6 kcal/mol between 0 and 16 degrees C and 14.6 kcal/mol between 16 and 30 degrees C. The phosphoprotein formed by aortic microsomes was thus quite similar to the acid-stable phosphorylated intermediate of the Ca2+-transport ATPase of sarcoplasmic reticulum from skeletal and cardiac muscle. These data suggest that the Ca2+-dependent phosphoprotein is a reaction intermediate of the Ca2+,Mg2+-ATPase of the aortic microsomes.  相似文献   

3.
Sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle were solubilized with a high concentration of dodecyl octaethyleneglycol monoether (C12E8) and the kinetic properties of the Ca2+,Mg2+-dependent ATPase [EC 3.6.1.3] were studied. The following results were obtained: 1. SR ATPase solubilized in C12E8 retains high ability to form phosphoenzyme ([EP] = 4--5 mol/10(6) g protein) for at least two days in the presence of 5 mM Ca2+, 0.5 M KCl, and 20% glycerol at pH 7.55. 2. The ATPase activity was dependent on both Mg2+ and Ca2+. However, the rate of E32P decay after the addition of unlabeled ATP was independent of Mg2+. 3. Most of the EP formed in the absence of Mg2+ was capable of reacting with ADP to form ATP in the backward reaction. However, in the presence of 5 mM Mg2+, the amount of ATP formed was markedly reduced without loss of the reactivity of the EP with ADP. 4. The removal of C12E8 from the ATPase by the use of Bio-Beads resulted in the full restoration of the Mg2+ dependency of the EP decomposition. 5. These results strongly suggest that in the case of SR solubilized with a high concentration of C12E8 the decomposition of phosphoenzyme is Mg2+ independent and ATP is mainly hydrolyzed through Mg2+-dependent decomposition of an enzyme-ATP complex, which is in equilibrium with phosphoenzyme and ADP.  相似文献   

4.
The Ca2+/Mg2+ ATPase of rat heart plasma membrane was activated by millimolar concentrations of Ca2+ or Mg2+; other divalent cations also activated the enzyme but to a lesser extent. Sodium azide at high concentrations inhibited the enzyme by about 20%; oligomycin at high concentrations also inhibited the enzyme slightly. Trifluoperazine at high concentrations was found inhibitory whereas trypsin treatment had no significant influence on the enzyme. The rate of ATP hydrolysis by the Ca2+/Mg2+ ATPase decayed exponentially; the first-order rate constants were 0.14-0.18 min-1 for Ca2+ ATPase activity and 0.15-0.30 min-1 for Mg2+ ATPase at 37 degrees C. The inactivation of the enzyme depended upon the presence of ATP or other high energy nucleotides but was not due to the accumulation of products of ATP hydrolysis. Furthermore, the inactivation of the enzyme was independent of temperature below 37 degrees C. Con A when added into the incubation medium before ATP blocked the ATP-dependent inactivation; this effect was prevented by alpha-methylmannoside. In the presence of low concentrations of detergent, the rate of ATP hydrolysis was reduced while the ATP-dependent inactivation was accelerated markedly. Both Con A and glutaraldehyde decreased the susceptibility of Ca2+/Mg2+ ATPase to the detergent. These results suggest that the Ca2+/Mg2+ ATPase is an intrinsic membrane protein which may be regulated by ATP.  相似文献   

5.
It has been previously shown that local anesthetics inhibit the total Ca2+, Mg2(+)-ATPase activity of synaptosomal plasma membranes. We have carried out kinetic studies to quantify the effects of these drugs on the different Ca2(+)-dependent and Mg2(+)-dependent ATPase activities of these membranes. As a result we have found that this inhibition is not altered by washing the membranes with EDTA or EGTA. We have also found that the Ca2(+)-dependent ATPase activity is not significantly inhibited in the concentration range of these local anesthetics and under the experimental conditions used in this study. The inhibition of the Mg2(+)-dependent ATPase activities of these membranes was found to be of a noncompetitive type with respect to the substrate ATP-Mg2+, did not significantly shift the Ca2+ dependence of the Ca2+, Mg2(+)-ATPase activity, and occurred in a concentration range of local anesthetics that does not significantly alter the order parameter (fluidity) of these membranes. Modulation of this activity by the changes of the membrane potential that are associated with the adsorption of local anesthetics on the synaptosomal plasma membrane is unlikely, on the basis of the weak effect of membrane potential changes on the Ca2+,Mg2(+)-ATPase activity. It is suggested that the local anesthetics lidocaine and dibucaine inhibit the Ca2+, Mg2(+)-ATPase of the synaptosomal plasma membrane by disruption of the lipid annulus.  相似文献   

6.
The ATP production of human erythrocytes in the steady state (approximately 2 mmoles . 1 cells-1 . h-1, 37 degrees C, pHi 7.2) is maintained by glycolysis and the ATP consumption is essentially limited to the cell membrane. About 25% of the ATP consumption is used for ion transport ATPases. The bulk of the ATP consuming processes in intact erythrocytes remains poorly understood. "Isotonic" erythrocyte membranes prepared under approximate intracellular conditions after freeze-thaw hemolysis have high (Ca2+, Mg2+)-ATPase activities (80% of the total membrane ATPase activity). There is a great discrepancy between the high capacity of the (Ca2+, Mg2+)-ATPase in isotonic membranes and the actual activity in the intact cell. The (Ca2+, Mg2+)-ATPase of isotonic membranes has a "high" Ca2+-affinity (Ka less than 0.5 microM) and a "low" Mg-ATP affinity (Km approximately 760 microM). This state of (Ca2+, Mg2+)-ATPase is caused by the association of calmodulin and 30000 Dalton polypeptides (ATP affinity modulator protein). Hypotonic washings of isotonic membranes result in a loss of the 30 kD polypeptides. EGTA (0.5 mM) extracts derived from isotonic membranes contain the 30 kD modulator protein and restore the properties of the (Ca2+, Mg2+)-ATPase of hypotonic membrane preparations to the isotonic characteristics. The Mg-ATP affinity modulator protein is assumed to form a complex with calmodulin and (Ca2+, Mg2+)-ATPase.  相似文献   

7.
Calcium ions produce a 3-4-fold stimulation of the actin-activated ATPase activities of phosphorylated myosin from bovine pulmonary artery or chicken gizzard at 37 degrees C and at physiological ionic strengths, 0.12-0.16 M. Actins from either chicken gizzard or rabbit skeletal muscle stimulate the activity of phosphorylated myosin in a Ca2+-dependent manner, indicating that the Ca2+ sensitivity involves myosin or a protein associated with it. Partial loss of Ca2+ sensitivity upon treatment of phosphorylated gizzard myosin with low concentrations of chymotrypsin and the lack of any change on similar treatment of actin supports the above conclusion. Although both actins enhance ATPase activity, activation by gizzard actin exhibits Ca2+ dependence at higher temperatures or lower ionic strengths than does activation by skeletal muscle actin. The Ca2+ dependence of the activity of phosphorylated heavy meromyosin is about half that of myosin and is affected differently by temperature, ionic strength and Mg2+, being independent of temperature and optimal at lower concentrations of NaCl. Raising the concentration of Mg2+ above 2-3 mM inhibits the activity of heavy meromyosin but stimulates that of myosin, indicating that Mg2+ and Ca2+ activate myosin at different binding sites.  相似文献   

8.
Sarcoplasmic reticulum vesicles were shown to possess a class of tightly bound calcium ions, inaccessible to the chelator, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid at 0 degrees C or 25 degrees C, amounting to 4.5 nmol/mg of protein (approximately 0.5 mol/mol (Ca2+,Mg2+)-ATPase). The calcium ionophores, A23187 and X537A, induced rapid exchange of tightly bound calcium in the presence of chelator. Chelator alone at 37 degrees C, caused irreversible loss of bound calcium, which correlated with uncoupling of transport from (Ca2+,Mg2+)-ATPase activity. Uncoupling was not accompanied by increased permeability to [14C]inulin. Slow exchange of tightly bound calcium with medium calcium was unaffected by turnover of the ATPase or by tryptic cleavage into 55,000- and 45,000-dalton fragments. Binding studies with labeled calcium suggested that tight binding involves a two-step process: Ca2+ + E in equilibrium K E . Ca2+ leads to E < Ca2+ where E and < Ca2+ represent the ATPase and tightly bound calcium, and K = 1.6 X 10(3) M-1. It is suggested that tightly bound calcium is located in a hydrophobic pocket in, or in close proximity to the ATPase, and, together with tightly bound adenine nucleotides (Aderem, A., McIntosh, D. B., and Berman, M. C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3622-03632), is related to the ability of the ATPase to couple hydrolysis of ATP to vectorial transfer of calcium across the membrane.  相似文献   

9.
ATPase activity in highly purified rat liver lysosome preparations was evaluated in the presence of other membrane cellular ATPase inhibitors, and compared with lysosome ATP-driven proton translocating activity. Replacement of 5 mM Mg2+ with equimolar Ca2+ brought about a 50% inhibition in divalent cation-dependent ATPase activity, and an 80% inactivation of ATP-linked lysosomal H+ pump activity. In the presence of optimal concentrations of Ca2+ and Mg2+, ATPase activity was similar to that seen in an Mg2+ medium. Mg2+-dependent ATPase activity was greatly inhibited (from 70 to 80%) by the platinum complexes; cis-didimethylsulfoxide dichloroplatinum(II) (CDDP) at approximately 90 microM and cis-diaminedichloroplatinum(II) at twofold higher concentrations. Less inhibition, about 30 and 45%, was obtained with N,N'-dicyclohexylcarbodiimide and N-ethylmaleimide, and the maximal effect occurred in the 50-100 microM and 0.1-1.5 mM ranges, respectively. The concentration dependence of inhibition by the above drugs was determined for both proton pumping and ATPase activities, and half-maximal inhibition concentration of each activity was found at nearly similar values. A micromolar concentration of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) prevented ATP from setting up a pH gradient across the lysosomal membranes, but stimulated Mg2+-ATPase activity significantly. ATPase activity in Ca2+ medium was also inhibited by CDDP and stimulated by FCCP, but both effects were two- to threefold less than those observed in Mg2+ medium. FCCP failed to stimulate ATPase activity in a CDDP-supplemented medium, thus suggesting that the same ATPase activity fraction was sensitive to both CDDP and FCCP. Mg2+-ATPase activity, like the proton pump, was anion dependent. The lowest activity was recorded in a F-medium, and increased in the order of F- less than SO2-4 less than Cl- approximately equal to Br-. The CDDP-sensitive ATPase activity observed, supported by Mg2+ and less so by Ca2+, may be related to lysosome proton pump activity.  相似文献   

10.
We studied the rotational mobility of the Ca2+ + Mg2+-activated ATPase in skeletal-muscle sarcoplasmic-reticulum vesicles, using time-resolved measurements of the depolarization of laser-flash-excited phosphorescence of the extrinsic triplet probe erythrosin. Our results are in general agreement with those of others [Bürkli & Cherry (1981) Biochemistry 20, 138-145] obtained by linear dichroism methods. In addition, we directly observed fast depolarization in the 1-5 microseconds time range that can be attributed to limited motion of part of the protein (segmental motion). Temperature-dependent changes in phosphorescence anisotropy indicated the onset of a conformational change in structure of the Ca2+ + Mg2+-activated ATPase at 11-13 degrees C. We also describe the synthesis of 5-iodoacetamidoerythrosin.  相似文献   

11.
Since it was possible for Ca2+,Mg2+-ATPase of sarcoplasmic reticulum (SR) to change its aggregation state in the membrane depending on temperature, and since the change could be the cause of the break in the Arrhenius plot of Ca2+,Mg2+-ATPase activity, the aggregation state of Ca2+,Mg2+-ATPase at 0 degrees C in the membrane was compared with that at 35 degrees C by freeze-fracture electron microscopy. These temperatures are below and above the break in the Arrhenius plot (about 18 degrees C), respectively. Two kinds of samples were used; fragmented SR vesicles and egg PC-ATPase vesicles, a reconstituted preparation from purified Ca2+,Mg2+-ATPase and egg yolk phosphatidylcholine (egg PC). For both the appearance of particles in the fracture faces of the samples fixed at 0 degrees C was similar to that at 35 degrees C, and phase separation between protein and lipid was not observed even at 0 degrees C. The size of the particles was measured and histograms of the sizes at 0 degrees C and 35 degrees C were made. The histogram at 0 degrees C was similar to that at 35 degrees C with a peak at 7.1 nm, which is 1-2 nm smaller than the value reported so far. The number of the particles per unit area of the membrane was also counted. The value at 0 degrees C was similar to that at 35 degrees C. These results indicate that Ca2+,Mg2+-ATPase of SR exists in the same aggregation state (estimated as oligomer based on the values obtained in this experiment) between 0 degrees C and 35 degrees C. Based on the results of this study we think that the break in the Arrhenius plot of Ca2+,Mg2+-ATPase activity in SR is not caused by the change in the aggregation state of Ca2+,Mg2+-ATPase.  相似文献   

12.
Subfractionation of sarcoplasmic reticulum from fast-twitch and slow-twitch rabbit skeletal muscles was performed on a sucrose density gradient. Vesicle fractions were characterized by: measurement of (Ca2+,Mg2+)-dependent (extra) ATPase, Mg2+-dependent (basal) ATPase, Ca2+ uptake characteristics, polypeptide patterns in sodium dodecylsulphate polyacrylamide gel electrophoreses, phosphoprotein formation and electronmicroscopy of negatively stained samples. In fast-twitch muscle, low and high density vesicles were separated. The latter showed high activity of (Ca2+,Mg2+)-dependent ATPase, negligible activity of Mg2+-dependent ATPase, high initial rate and high capacity of Ca2+ uptake, high amount of phosphorylated 115000-Mr polypeptide, and appeared morphologically as thin-walled vesicles covered with particles of 4 nm in diameter. Low density vesicles had little (Ca2+,Mg2+)-dependent ATPase but high Mg2+-dependent ATPase. Although the initial rate of Ca2+ uptake was markedly lower, the total capacity of uptake was comparable with that of high density vesicles. Phosphorylated 115000-Mr polypeptide was detectable at low concentrations. Instead, 57000 and 47000-Mr polypeptides were characterized as forming stable phosphoproteins in the presence of ATP and Mg2+. Negatively stained, these vesicles appeared to have smooth surfaces. It is suggested that low density vesicles represent a Ca2+ sequestering system different from that of high density vesicles and that Mg2+-dependent (basal) ATPase as well as the 57000 and 47000-Mr polypeptides are part of the Ca2+ transport system within the low density vesicles. According to the results from slow-twitch muscle, Ca2+ sequestration by the sarcoplasmic reticulum functions in this muscle type only through the low density vesicles.  相似文献   

13.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

14.
(CaMg)ATPase [(Ca2+ + Mg2+)-dependent ATPase] was partially purified from a microsomal fraction of the smooth muscle of the pig stomach (antrum). Membranes were solubilized with deoxycholate, followed by removal of the detergent by dialysis. The purified (CaMg)ATPase has a specific activity (at 37 degrees C) of 157 +/- 12.1 (7)nmol.min-1.mg-1 of protein, and it is stimulated by calmodulin to 255 +/- 20.9 (7)nmol.min.mg-1. This purification of the (CaMg)ATPase resulted in an increase of the specific activity by approx. 18-fold and in a recovery of the total enzyme activity of 55% compared with the microsomal fraction. The partially purified (CaMg)ATPase still contains some Mg2+-and (Na+ + K+)-dependent ATPase activities, but their specific activities are increased relatively less than that of the (CaMg)ATPase. The ratios of the (CaMg)ATPase to Mg2+- and (Na+ + K+)-dependent ATPase activities increase from respectively 0.14 and 0.81 in the crude microsomal fraction to 1.39 and 9.07 in the purified preparation. During removal of the deoxycholate by dialysis, vesicles were reconstituted which were capable of ATP-dependent Ca2+ transport.  相似文献   

15.
The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport   总被引:2,自引:0,他引:2  
The ATP-dependent uptake of Ca2+ by rat liver microsomal fraction is dependent upon Mg2+. Studies of the Mg2+ requirement of the underlying microsomal Ca2+-ATPase have been hampered by the presence of a large basal Mg2+-ATPase activity. We have examined the effect of various Mg2+ concentrations on Mg2+-ATPase activity, Ca2+ uptake, Ca2+-ATPase activity and microsomal phosphoprotein formation. Both Mg2+-ATPase activity and Ca2+ uptake were markedly stimulated by increasing Mg2+ concentration. However, the Ca2+-ATPase activity, measured concomitantly with Ca2+ uptake, was apparently unaffected by changes in the Mg2+ concentration. In order to examine the apparent paradox of Mg2+ stimulation of Ca2+ uptake but not of Ca2+-ATPase activity, we examined the formation of the Ca2+-ATPase phosphoenzyme intermediate and formation of a Mg2+-dependent phosphoprotein, which we have proposed to be an attribute of the Mg2+-ATPase activity. We found that Ca2+ apparently inhibited formation of the Mg2+-dependent phosphoprotein both in the absence and presence of exogenous Mg2+. This suggests that Ca2+ may inhibit (at least partially) the Mg2+-ATPase activity. However, inclusion of the Ca2+ inhibition of Mg2+-ATPase activity in the calculation of Ca2+-ATPase activity reveals that this effect is insufficient to totally account for the stimulation of Ca2+ uptake by Mg2+. This suggests that Mg2+, in addition to stimulation of Ca2+-ATPase activity, may have a direct stimulatory effect on Ca2+ uptake in an as yet undefined fashion. In an effort to further examine the effect of Mg2+ on the microsomal Ca2+ transport system of rat liver, the interaction of this system with Sr2+ was examined. Sr2+ was sequestered into an A23187-releasable space in an ATP-dependent manner by rat liver microsomal fraction. The uptake of Sr2+ was similar to that of Ca2+ in terms of both rate and extent. A Sr2+-dependent ATPase activity was associated with the Sr2+ uptake. Sr2+ promoted formation of a phosphoprotein which was hydroxylamine-labile and base-labile. This phosphoprotein was indistinguishable from the Ca2+-dependent ATPase phosphoenzyme intermediate. Sr2+ uptake was markedly stimulated by exogenous Mg2+, but the Sr2+-dependent ATPase activity was unaffected by increasing Mg2+ concentrations. Sr2+ uptake and Sr2+-dependent ATPase activity were concomitantly inhibited by sodium vanadate. In contrast to Ca2+, Sr2+ had no effect on Mg2+-dependent phosphoprotein formation. Taken together, these data indicate that Mg2+ stimulated Ca2+ and Sr2+ transport by increasing the Ca2+ (Sr2+)/ATP ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Lysophospholipids caused the release of 45Ca2+ from isolated rat liver mitochondria incubated at 37 degrees C in the presence of low concentrations of free Ca2+, ATP, Mg2+, and phosphate ions. The concentrations of lysophosphatidylethanolamine, lysophosphatidylcholine, lysophosphatidic acid and lysophosphatidylinositol which gave half-maximal effects were 5, 26, 40 and 56 microM, respectively. The effects of lysophosphatidylethanolamine were not associated with a significant impairment of the integrity of the mitochondria as monitored by measurement of membrane potential and the rate of respiration. Lysophosphatidylethanolamine did not induce the release of Ca2+ from a microsomal fraction, or enhance Ca2+ inflow across the plasma membrane of intact cells, but did release Ca2+ from an homogenate prepared from isolated hepatocytes and incubated under the same conditions as isolated mitochondria. The proportion of mitochondrial 45Ca2+ released by lysophosphatidylethanolamine was not markedly affected by altering the total amount of Ca2+ in the mitochondria, the concentration of extramitochondrial Mg2+, by the addition of Ruthenium Red, or when oleoyl lysophosphatidylethanolamine was employed instead of the palmitoyl derivative. The effects of 5 microM-lysophosphatidylethanolamine were reversed by washing the mitochondria. The possibility that lysophosphatidylethanolamine acts to release Ca2+ from mitochondria in intact hepatocytes following the binding of Ca2+-dependent hormones to the plasma membrane is briefly discussed.  相似文献   

17.
Plasma membrane fractions from rat corpus luteum contain two kinds of Ca2+-stimulated ATPase, one having a high affinity for Ca2+, the other a low affinity for Ca2+. The high affinity ATPase had a specific Ca2+ requirement with a K 1/2 of 0.2 to 0.3 microM; it had a Vmax of 105 nmol min-1 mg-1 and distributed, upon subcellular fractionation, with recognized plasma membrane enzymes. The properties of this enzyme indicate that it is a CA2+ extrusion pump. The low affinity pump (K 1/2 for Ca2+, about 15 microM) was nonspecific, being stimulated equally well by Ca2+ of Mg2+; its function is unknown. Although the high affinity ATPase resembled the erythrocyte Ca2+-pumping ATPase in the properties mentioned above, it differed in that it failed to respond to Mg2+ or calmodulin. The lack of response to Mg2+ was due to the enzyme's retention of endogenous Mg2+; it did, after incubation with chelators, show a Mg2+ requirement. However, we were unable to show any effect of added calmodulin or trifluoperazine. This failure may be related to the high content of tightly bound calmodulin in these membranes. Much of this calmodulin could not be extracted even by washing with 1 mM EGTA and/or 0.1% (w/v) Triton X-100. This enzyme, the erythrocyte enzyme, and the adipocyte plasma membrane Ca2+ ATPase all belong to the class of Ca2+ ATPases with plasma membrane distribution and high affinity for Ca2+, indicating that they are Ca2+ extrusion pumps. However, the data indicate that tissue-specific differences exist within this class, with the enzyme from adipocytes and rat corpus luteum belonging to a subclass in which the requirement for Mg2+ and any response to calmodulin are difficult to demonstrate.  相似文献   

18.
The functional confirmation of availability of Ca2+ transport initially-active systems in the embryo cells of loach Misgurnus fossilis L. has been obtained. Using thapsigargin, the specific inhibitor of endoplasmic reticulum of Ca2+, Mg(2+)-ATPase, this enzyme activity was divided into thapsigargin-sensitive (actually endoplasmic reticulum Ca2+, Mg(2+)-ATPase) and thapsigargin-insensitive (plasma membrane Ca2+, Mg(2+)-ATPase) constituents. The Ca(2+)-independent Mg(2+)-dependent ATPase activity makes above 39.7% of the common Ca2+, Mg(2+)-ATPase activity of embryo loach. The periodic changes of Ca2+, Mg(2+)-ATPase activity (except for the changes of plasma membrane Ca2+, Mg(2+)-ATPase activity) were found out, which coincide with periodic [Ca2+]i oscillations during the synchronous divisions of loach blastomers embryos.  相似文献   

19.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

20.
Direct measurements of phosphorylation of the Ca2+ ATPase of the sarcoplasmic reticulum (SR) have shown that the lifetime of the first phosphorylated intermediate in the Ca2+ transport cycle, E1 approximately P, increases with decreasing [Mg2+] (Dupont, Y. 1980. Eur. J. Biochem. 109:231-238). Previous x-ray diffraction work (Pascolini, D., and J.K. Blasie. 1988. Biophys. J. 54:669-678) under high [Mg2+] conditions (25 mM) indicated that changes in the profile structure of the SR membrane could be responsible for the low-temperature transient trapping of E1 approximately P that occurs at temperatures below 2-3 degrees C, the upper characteristic temperature th for lipid lateral phase separation in the membrane. We now present results of our study of the Ca2+ uptake kinetics and of the structure of the SR membrane at low [Mg2+] (less than or equal to 100 microM). Our results show a slowing in the kinetics of both phases of the Ca2+ uptake process and an increase in the duration of the plateau of the fast phase before the onset of the slow phase, indicating an increase in the lifetime (transient trapping) of E1 approximately P. Calcium uptake kinetics at low [Mg2+] and moderately low temperature (approximately 0 degree C) are similar to those observed at much lower temperatures (approximately -10 degrees C) at high [Mg2+]. The temperature-induced structural changes that we observed at low [Mg2+] are much more pronounced than those found to occur at higher [Mg2+]. Also, at the lower [Mg2+] the upper characteristic temperature th for lipid lateral phase separation was found to be higher, at approximately 8-10 degrees C. Our studies indicate that both temperature and [Mg2+] affect the structure and the functionality (as measured by changes in the kinetics of Ca2+ uptake) of the SR membrane. Membrane lipid phase behavior and changes in the Ca2+ ATPase profile structure seem to be related, and we have found that structural changes are responsible for the slowing of the kinetics of the fast phase of Ca2+ uptake, and could also mediate the effect that [Mg2+] has on E1 approximately P lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号