首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shewanella oneidensis is a target of extensive research in the fields of bioelectrochemical systems and bioremediation because of its versatile metabolic capabilities, especially with regard to respiration with extracellular electron acceptors. The physiological activity of S. oneidensis to respire at electrodes is of great interest, but the growth conditions in thin-layer biofilms make physiological analyses experimentally challenging. Here, we took a global approach to evaluate physiological activity with an electrode as terminal electron acceptor for the generation of electric current. We performed expression analysis with DNA microarrays to compare the overall gene expression with an electrode to that with soluble iron(III) or oxygen as the electron acceptor and applied new hierarchical model-based statistics for the differential expression analysis. We confirmed the differential expression of many genes that have previously been reported to be involved in electrode respiration, such as the entire mtr operon. We also formulate hypotheses on other possible gene involvements in electrode respiration, for example, a role of ScyA in inter-protein electron transfer and a regulatory role of the cbb3-type cytochrome c oxidase under anaerobic conditions. Further, we hypothesize that electrode respiration imposes a significant stress on S. oneidensis, resulting in higher energetic costs for electrode respiration than for soluble iron(III) respiration, which fosters a higher metabolic turnover to cover energy needs. Our hypotheses now require experimental verification, but this expression analysis provides a fundamental platform for further studies into the molecular mechanisms of S. oneidensis electron transfer and the physiologically special situation of growth on a poised-potential surface.  相似文献   

2.
The cis-regulatory map of Shewanella genomes   总被引:2,自引:1,他引:1       下载免费PDF全文
Liu J  Xu X  Stormo GD 《Nucleic acids research》2008,36(16):5376-5390
  相似文献   

3.
【目的】研究Shewanella oneidensis MR-1厌氧生物转化2,4-二硝基甲苯(2,4-DNT)的能力、转化过程和影响因素。【方法】以乳酸钠为电子供体, 2,4-DNT为电子受体, S. oneidensis MR-1为降解菌, 黄素为胞外电子载体, 设立四个不同的对照体系并监测各体系在转化过程中2,4-DNT及其产物的动态变化。同时研究不同2,4-DNT浓度下细胞的生长情况, 以及不同黄素浓度下2,4-DNT的降解情况。【结果】S. oneidensis MR-1菌能够高效还原转化2,4-DNT为4-氨基-2-硝基甲苯(4A2NT)和2-氨基-4-硝基甲苯(2A4NT), 并将其进一步还原为2,4-二氨基甲苯(2,4-DAT), 黄素能加速转化过程。【结论】S. oneidensis MR-1菌具备高效还原转化2,4-DNT的能力, 为实际环境中硝基苯污染的原位修复提供科学依据。  相似文献   

4.
Shewanella oneidensis MR-1是一种模式金属还原菌,它能够在厌氧条件下,将多种金属化合物和人工合成染料等作为电子受体还原代谢。因此,该菌常常被用于生态修复等研究。厌氧条件下,S.oneidensis MR-1能够将细胞质内或细胞内膜产生的电子通过定位于细胞内膜、细胞膜周质和细胞外膜上的c-血红色素蛋白或还原酶所组成的具有多样性的电子传递系统,最终传递到存在于细菌细胞外环境中的电子受体。通过对多种电子传递过程的介绍,进一步阐明其对污染物修复和纳米材料合成的机理,从而为未来对该类微生物的利用和开发提供更为充分的理论依据。  相似文献   

5.
Shewanella oneidensis uses a wide range of terminal electron acceptors for respiration. In this study, we show that the chemotactic response of S. oneidensis to anaerobic electron acceptors requires functional electron transport systems. Deletion of the genes encoding dimethyl sulphoxide and trimethylamine N -oxide reductases, or inactivation of these molybdoenzymes as well as nitrate reductase by addition of tungstate, abolished electron acceptor taxis. Moreover, addition of nigericin prevented taxis towards trimethylamine N -oxide, dimethyl sulphoxide, nitrite, nitrate and fumarate, showing that this process depends on the ΔpH component of the proton motive force. These data, together with those concerning response to metals ( Bencharit and Ward, 2005 ), support the idea that, in S. oneidensis , taxis towards electron acceptors is governed by an energy taxis mechanism. Surprisingly, energy taxis in S. oneidensis is not mediated by the PAS-containing chemoreceptors but rather by a chemoreceptor (SO2240) containing a Cache domain. Four other chemoreceptors also play a minor role in this process. These results indicate that energy taxis can be mediated by new types of chemoreceptors.  相似文献   

6.
Microbial metal reduction forms the basis of alternate bioremediation strategies for reductive precipitation and immobilization of toxic metals such as the radionuclide technetium [Tc(VII)]. A rapid mutant screening technique was developed to identify Shewanella oneidensis MR-1 respiratory mutants unable to reduce Tc(VII) as anaerobic electron acceptor. The Tc(VII) reduction-deficient (Tcr) mutant screening technique was based on the observation that wild-type S. oneidensis produced a black Tc(IV) precipitate on its colony surface during growth on Tc(VII)-amended agar, while colonies arising from mutagenized cells did not. Tcr mutants unable to produce the black precipitate were subsequently tested for anaerobic growth on an array of three electron donors and 13 alternate electron acceptors. The Tcr mutants displayed a broad spectrum of anaerobic growth deficiencies, including several that were unable to reduce Tc(VII) with hydrogen or lactate as electron donor, yet retained the ability to reduce Tc(VII) with formate. This report describes the development of a novel Tcr mutant screening technique and its application to identify the first set of Tcr mutants in a metal-reducing member of the genus Shewanella.  相似文献   

7.
Cr(VI) was added to early- and mid-log-phase Shewanella oneidensis (S. oneidensis) MR-1 cultures to study the physiological state-dependent toxicity of Cr(VI). Cr(VI) reduction and culture growth were measured during and after Cr(VI) reduction. Inhibition of growth was observed when Cr(VI) was added to cultures of MR-1 growing aerobically or anaerobically with fumarate as the terminal electron acceptor. Under anaerobic conditions, there was immediate cessation of growth upon addition of Cr(VI) in early- and mid-log-phase cultures. However, once Cr(VI) was reduced below detection limits (0.002 mM), the cultures resumed growth with normal cell yield values observed. In contrast to anaerobic MR-1 cultures, addition of Cr(VI) to aerobically growing cultures resulted in a gradual decrease of the growth rate. In addition, under aerobic conditions, lower cell yields were also observed with Cr(VI)-treated cultures when compared to cultures that were not exposed to Cr(VI). Differences in response to Cr(VI) between aerobically and anaerobically growing cultures indicate that Cr(VI) toxicity in MR-1 is dependent on the physiological growth condition of the culture. Cr(VI) reduction has been previously studied in Shewanella spp., and it has been proposed that Shewanella spp. may be used in Cr(VI) bioremediation systems. Studies of Shewanella spp. provide valuable information on the microbial physiology of dissimilatory metal reducing bacteria; however, our study indicates that S. oneidensis MR-1 is highly susceptible to growth inhibition by Cr(VI) toxicity, even at low concentrations [0.015 mM Cr(VI)].  相似文献   

8.
Microbial fuel cell (MFC) based sensing was explored to provide for the development of an in situ bioremediation monitoring approach for substrate concentrations and microbial respiration rates. MFC systems were examined in column systems where Shewanella oneidensis MR1 used an external electron acceptor (an electrode) to metabolize lactate (a bioremediation additive) to acetate. Column systems were operated with varying influent lactate concentrations (0-41 mM) and monitored for current generation (0.01-0.39 mA). Biological current generation paralleled bulk phase lactate concentration both in the influent and in the bulk phase at the anode; current values were correlated to lactate concentration at the anode (R(2) = 0.9), The electrical signal provided real-time information for electron donor availability and biological activity. These results have practical implications for efficient and inexpensive real-time monitoring of in situ bioremediation processes where information on substrate concentrations is often difficult to obtain and where information on the rate and nature of metabolic processes is needed.  相似文献   

9.
The membrane proteome plays a critical role in electron transport processes in Shewanella oneidensis MR-1, a bacterial organism that has great potential for bioremediation. Biotinylation of intact cells with subsequent affinity-enrichment has become a useful tool for characterization of the membrane proteome. As opposed to these commonly used, water-soluble commercial reagents, we here introduce a family of hydrophobic, cell-permeable affinity probes for extensive labeling and detection of membrane proteins. When applied to S. oneidensis cells, all three new chemical probes allowed identification of a substantial proportion of membrane proteins from total cell lysate without the use of specific membrane isolation method. From a total of 410 unique proteins identified, approximately 42% are cell envelope proteins that include outer membrane, periplasmic, and inner membrane proteins. This report demonstrates the first application of this intact cell biotinylation method to S. oneidensis and presents the results of many identified proteins that are involved in metal reduction processes. As a general labeling method, all chemical probes we introduced in this study can be extended to other organisms or cell types and will help expedite the characterization of membrane proteomes.  相似文献   

10.
11.
Shewanella oneidensis MR-1 has conventionally been considered unable to use glucose as a carbon substrate for growth. The genome sequence of S. oneidensis MR-1 however suggests the ability to use glucose. Here, we demonstrate that during initial glucose exposure, S. oneidensis MR-1 quickly and frequently gains the ability to utilize glucose as a sole carbon source, in contrast to wild-type S. oneidensis, which cannot immediately use glucose as a sole carbon substrate. High-performance liquid chromatography and (14)C glucose tracer studies confirm the disappearance in cultures and assimilation and respiration, respectively, of glucose. The relatively short time frame with which S. oneidensis MR-1 gained the ability to use glucose raises interesting ecological implications.  相似文献   

12.
In this work, we investigated the anaerobic decolorization of methyl orange (MO), a typical azo dye, by Shewanella oneidensis MR-1, which can use various organic and inorganic substances as its electron acceptor in natural and engineered environments. S. oneidensis MR-1 was found to be able to obtain energy for growth through anaerobic respiration accompanied with dissimilatory azo-reduction of MO. Chemical analysis shows that MO reduction occurred via the cleavage of azo bond. Block of Mtr respiratory pathway, a transmembrane electron transport chain, resulted in a reduction of decolorization rate by 80%, compared to the wild type. Knockout of cymA resulted in a substantial loss of its azo-reduction ability, indicating that CymA is a key c-type cytochrome in the electron transfer chain to MO. Thus, the MtrA-MtrB-MtrC respiratory pathway is proposed to be mainly responsible for the anaerobic decolorization of azo dyes such as MO by S. oneidensis.  相似文献   

13.
The metal-reducing bacterium Shewanella oneidensis MR-1 displays remarkable anaerobic respiratory plasticity, which is reflected in the extensive number of electron transport components encoded in its genome. In these studies, several cell components required for the reduction of vanadium(V) were determined. V(V) reduction is mediated by an electron transport chain which includes cytoplasmic membrane components (menaquinone and the tetraheme cytochrome CymA) and the outer membrane (OM) cytochrome OmcB. A partial role for the OM cytochrome OmcA was evident. Electron spin resonance spectroscopy demonstrated that V(V) was reduced to V(IV). V(V) reduction did not support anaerobic growth. This is the first report delineating specific electron transport components that are required for V(V) reduction and of a role for OM cytochromes in the reduction of a soluble metal species.  相似文献   

14.
15.
刘鹏程  朱雯雯  肖翔 《微生物学通报》2015,42(11):2238-2244
以模式菌株Shewanella oneidensis MR-1为代表的Shewanella菌属产电微生物广泛分布于自然水体环境中。作为兼性厌氧菌,Shewanella菌除了能进行有氧呼吸外,还能利用多种电子受体进行厌氧呼吸。通过多种细胞色素所组成的复杂电子传递网络,Shewanella菌不仅能利用渗入到周质空间的可溶性电子受体进行厌氧呼吸,更为特殊的是其能够借助电子的跨膜传递实现对胞外不溶性电子受体的异化还原代谢。本文概述了近年来Shewanella菌厌氧代谢途径的研究进展,探讨电子传递网络对Shewanella菌呼吸多样性及环境适应性的影响。  相似文献   

16.
Price MS  Chao LY  Marletta MA 《Biochemistry》2007,46(48):13677-13683
Nitric oxide (NO) signaling in animals controls processes such as smooth muscle relaxation and neurotransmission by activation of soluble guanylate cyclase (sGC). Prokaryotic homologues of the sGC heme domain, called H-NOX domains, have been identified and are generally found in a predicted operon in conjunction with a histidine kinase. Here, we show that an H-NOX protein (SO2144) from Shewanella oneidensis directly interacts with the sensor histidine kinase (SO2145), binds NO in a 5-coordinate complex similar to mammalian sGC, and in that form inhibits the activity of a histidine kinase (SO2145). We also describe the first account of NO formation by S. oneidensis under anaerobic growth conditions derived from nitrate and nitrite. These observations suggest that the S. oneidensis H-NOX and histidine kinase pair function as part of a novel two-component signaling pathway that is responsive to NO formation from higher nitrogen oxides used as electron acceptors when oxygen is low and thereby functioning as an environmental sensor.  相似文献   

17.
Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.  相似文献   

18.
19.
Growth with high planktonic biomass in Shewanella oneidensis fuel cells   总被引:1,自引:0,他引:1  
Shewanella oneidensis MR-1 grew for over 50 days in microbial fuel cells, incompletely oxidizing lactate to acetate with high recovery of the electrons derived from this reaction as electricity. Electricity was produced with lactate or hydrogen and current was comparable to that of electricigens which completely oxidize organic substrates. However, unlike fuel cells with previously described electricigens, in which cells are primarily attached to the anode, at least as many of the S. oneidensis cells were planktonic as were attached to the anode. These results demonstrate that S. oneidensis may conserve energy for growth with an electrode serving as an electron acceptor and suggest that multiple strategies for electron transfer to fuel cell anodes exist.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号