首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dilution and column-based protein refolding techniques are compared for refolding Delta 5-3-ketosteroid isomerase (KSI) with a C-terminus his6-tag. Column refolding was performed by removing the denaturant while the protein was adsorbed in an immobilized metal affinity chromatography column. Both dilution refolding and a single-step column-based refolding strategy were optimized to maximize the recovery of KSI enzyme activity, and achieved refolding yields of 87% and 70% respectively. It was found that the column-based refolding yield was reduced at higher adsorbed protein concentrations. An elution gradient with increasing imidazole concentration was used to selectively elute the biologically active KSI protein following column refolding, with high molecular weight KSI aggregates retained in the column. An iterative column-refolding process was then developed to denature and refold protein retained in the column, which significantly increased the refolding yield at high-adsorbed protein concentrations. Repetition of the column refolding operation increased the refolding yield from 50% to 75% for protein adsorbed at a concentration of 2.9 mg/mL of adsorbent. Although for the KSI protein column-based refolding did not improve the overall refolding yield compared to dilution refolding, it may still be advantageous due to the ease of integration with purification operations, increased control over the refolding conditions, and the ability to segregate refolded protein from inactive aggregates during elution.  相似文献   

2.
重组蛋白的体外再折叠   总被引:2,自引:0,他引:2  
重组蛋白的再折叠是基因工程下游处理中非常重要的环节。本文在分析了蛋白体外折叠的机制后,指出了重组蛋白再折叠的一般策略,并综述了近年来的主要新方法,包括:分析伴侣介导的再折叠去污剂协助的再折叠,反向微团中的蛋白再折叠,折叠促进剂的添加以及再折地促进二硫键形成的方法 。  相似文献   

3.
Protein refolding is an important process to recover active recombinant proteins from inclusion bodies. Refolding by simple dilution, dialysis and on-column refolding methods are the most common techniques reported in the literature. However, the refolding process is time-consuming and laborious due to the variability of the behavior of each protein and requires a great deal of trial-and-error to achieve success. Hence, there is a need for automation to make the whole process as convenient as possible. In this study, we invented an automatic apparatus that integrated three refolding techniques: varying dilution, dialysis and on-column refolding. We demonstrated the effectiveness of this technology by varying the flow rates of the dilution buffer into the denatured protein and testing different refolding methods. We carried out different refolding methods on this apparatus: a combination of dilution and dialysis for human stromal cell-derived factor 1 (SDF-1/CXCL12) and thioredoxin fused-human artemin protein (Trx-ARTN); dilution refolding for thioredoxin fused-human insulin-like growth factor I protein (Trx-IGF1) and enhanced fluorescent protein (EGFP); and on-column refolding for bovine serum albumin (BSA). The protein refolding processes of these five proteins were preliminarily optimized using the slowly descending denaturants (or additives) method. Using this strategy of decreasing denaturants concentration, the efficiency of protein refolding was found to produce higher quantities of native protein. The standard refolding apparatus configuration can support different operations for different applications; it is not limited to simple dilution, dialysis and on-column refolding techniques. Refolding by slowly decreasing denaturants concentration, followed by concentration or purification on-column, may be a useful strategy for rapid and efficient recovery of active proteins from inclusion bodies. An automatic refolding apparatus employing this flexible strategy may provide a powerful tool for preparative scale protein production.  相似文献   

4.
Over-expression of heterologous proteins in Escherichia coli is commonly hindered by the formation of inclusion bodies. Nevertheless, refolding of proteins in vitro has become an essential requirement in the development of structural genomics (proteomics) and as a means of recovering functional proteins from inclusion bodies. Many distinct methods for protein refolding are now in use. However, regardless of method used, developing a reliable protein refolding protocol still requires significant optimization through trial and error. Many proteins fall into the category of "Challenging" or "Difficult to Express" and are problematic to refold using traditional chaotrope-based refolding techniques. This review discusses new methods for improving protein refolding, such as implementing high hydrostatic pressure, using small molecule additives to enhance traditional protein refolding strategies, as well as developing practical methods for performing refolding studies to maximize their reliability and utility. The strategies examined here focus on high-throughput, automated refolding screens, which can be applied to structural genomic projects.  相似文献   

5.
huGM-CSF(9-127)-IL-6(29-184)融合蛋白的复性及纯化研究   总被引:1,自引:0,他引:1  
利用Q Sepharose H.P.离子交换柱层析在8mol/L尿素变性条件下对huGM-CSF(9-127)-IL-6(29-184)融合蛋白进行初步纯化,然后再利用Sephacryl S-200分子筛柱层析复性及纯化后获得目的蛋白,其纯度达到95%以上。该纯化方案成功地解决了稀释复性或透析复性产物在进行Q Sepharose H.P.离子交换柱层析时目的蛋白不稳定而沉积于柱上的问题,获得了较好的复性效果,复性率达到80%以上。使用该纯化方案,1天内便可基本完成重组蛋白的复性及纯化过程,而且也便于扩大。  相似文献   

6.
In laboratories and manufacturing settings, a rapid and inexpensive method for the preparation of a target protein is crucial for promoting resesrach in protein science and engineering. Inclusion-body-based protein production is a promising method because high yields are achieved in the upstream process, although the refolding of solubilized, unfolded proteins in downstream processes often leads to significantly lower yields. The most challenging problem is that the effective condition for refolding is protein dependent and is therefore difficult to select in a rational manner. Accordingly, considerable time and expense using trial-and-error approaches are often needed to increase the final protein yield. Furthermore, for certain target proteins, finding suitable conditions to achieve an adequate yield cannot be obtained by existing methods. Therefore, to convert such a troublesome refolding process into a routine one, a wide array of methods based on novel technologies and materials have been developed. These methods select refolding conditions where productive refolding dominates over unproductive aggregation in competitive refolding reactions. This review focuses on synthetic refolding additives and describes the concepts underlying the development of reported chemical additives or chemical-additive-b  相似文献   

7.
Steps for the refolding of proteins from solubilized inclusion bodies or misfolded product often represent bottlenecks in process development, where optimal conditions are typically derived empirically. To expedite refolding optimization, microwell screening may be used to test multiple conditions in parallel. Fast, accurate, and reproducible assays are required for such screening processes, and the results derived must be representative of the process at full scale. This article demonstrates the use of these microscale techniques to evaluate the effects of a number of additives on the refolding of IGF‐1 from denatured inclusion bodies, using an established HPLC assay for this protein. Prior to this, microwell refolding was calibrated for scale‐up using hen egg‐white lysozyme (HEWL) as an initial model protein, allowing us to implement and compare several assays for protein refolding, including turbidity, enzyme activity, and chromatographic methods, and assess their use for microwell‐based experimentation. The impact of various microplate types upon protein binding and loss is also assessed. Solution mixing is a key factor in protein refolding, therefore we have characterized the effects of different methods of mixing in microwells in terms of their impact on protein refolding. Our results confirm the applicability and scalability of microwell screening for the development of protein refolding processes, and its potential for application to new inclusion body‐derived protein products. Biotechnol. Bioeng. 2009;103: 329–340. © 2008 Wiley Periodicals, Inc.  相似文献   

8.
Refolding of reduced and denatured protein in vitro has been an important issue for both basic research and applied biotechnology. Refolding at low protein concentration requires large volumes of refolding buffer. Among various refolding methods, diafiltration is very useful to control the denaturant and red/ox reagents in a refolding solution. We constructed a refolding procedure of high lysozyme concentration (0.5-10 mg/ml) based on the linear reduction of the urea concentration during diafiltration under oxygen pressure. When the urea concentration in the refolding vessel was decreased from 4 M with a rate of 0.167 M/h, the refolding yields were 85% and 63% at protein concentrations, 5 mg/ml and 10 mg/ml, respectively, after 11 h. This method gave a high productivity of 40.1,microM/h of the refolding lysozyme. The change in refolding yields during the diafiltration could be simulated using the model of Hevehan and Clark.  相似文献   

9.
Protein refolding from bacterial inclusion bodies is a crucial step for the production of recombinant proteins, but the refolding step often results in significantly lower yields due to aggregation. To prevent aggregation, chemical additives are often used. However, the ability of additives to effectively increase refolding yields are protein dependent, and therefore, it is important to understand the manner in which the substructures of additives confer suitable properties on protein refolding. We focused attention on nonionic detergents, the polyethylene glycol monooleyl ether (PGME) series, and systematically studied the influence of two to 90 polyethylene glycol (PEG) lengths of PGMEs on the refolding of pig muscle lactate dehydrogenase (LDH), hen egg white lysozyme, and yeast α‐glucosidase. PGMEs with longer PEG lengths such as PGME20, 50, and 90 suppressed aggregation, and increased refolding yields. Notably, PGME20 increased the LDH yield to 56.7% from 2.5% without additives. According to the refolding kinetic analysis of LDH, compared with PGME50 and 90, the refolding rate constant in PGME20 solutions remained relatively high at a broad range of concentrations because of its weaker steric hindrance of intramolecular interactions involved in folding, leading to a preference for refolding over aggregation. These findings should provide basic guidelines to identify appropriate PEG‐based nonionic detergents for protein refolding.  相似文献   

10.
In order to examine the possibility of the use of a surface plasmon resonance (SPR) sensor for real-time monitoring of the process of refolding of immobilized proteins, the refolding of firefly luciferase immobilized on a carboxymethyldextran matrix layer was analyzed. The SPR signal of the immobilized luciferase decreased after unfolding induced by GdnCl and increased gradually in the refolding buffer, while there was no signal change in the reference surface lacking the immobilized protein. The decrease in the SPR signal on unfolding was consistent with the difference between the refractive indices of the native and unfolded protein solutions. The effects of blocking of the excess NHS-groups of the matrix layer on the refolding yield were examined by means of an SPR sensor. The results were consistent with those obtained with the enzymatic activity assay, indicating that the changes in the SPR signal reflected the real-time conformational changes of the immobilized protein. Hence, an SPR biosensor might be used for monitoring of the process of refolding of immobilized proteins and as a novel tool for optimization of the refolding conditions. This is the first demonstration that SPR signal changes reflect the conformational changes of an immobilized protein upon unfolding and refolding.  相似文献   

11.
The full-length cDNA of MTH1in Schistosoma japonicum was previously isolated. However, insoluble protein expression in Escherichia coli is the biggest bottleneck limiting biological and biophysical studies. Protein aggregation could not be significantly prevented using solubilization or refolding techniques, and denatured MTH1 protein could not be refolded to the native monomer form. Hence, integrating several refolding techniques within the protein refolding process of MTH1, a large amount of active MTH1 was obtained for protein crystallization. We primarily utilized the two-step-denaturing and refolding method and the protein refolding screening technique, as well as the continuous dialysis method. First, we identified the refolding buffer composition that allowed for successful refolding to overcome protein precipitation. Next, we used the two-step-denaturing and refolding method and the continuous dialysis method to suppress protein aggregation. In the end, we obtained 15 mg of active MTH1 monomer with 95% purity from 0.5l medium. Integrated refolding techniques proved to be excellent for obtaining the native monomer of S. japonicum MTH1 from inclusion bodies, paving the way for future biological and biophysical studies.  相似文献   

12.
Desai A  Lee C  Sharma L  Sharma A 《Biochimie》2006,88(10):1435-1445
Cyclodextrins (CDs), in the presence or absence of detergents, have been reported to suppress aggregate formation during the refolding of a number of proteins. A structure-activity relationship study between CD chemistry and refolding of lysozyme was performed and compared to carbonic anhydrase, in order to better understand the mechanism of CD-assisted protein refolding and to identify CDs that could function as good protein folding agents. Among the natural CDs, which have only hydroxyl groups, alpha-CD, with a smaller cavity size was more effective than the oligosaccharide with a larger cavity, gamma-CD. Replacement of the hydroxyls with other functional groups did not improve, but could seriously interfere, with the lysozyme refolding ability of alpha-CD. In case of gamma-CD, substitution of its hydroxyls with other groups either enhanced or diminished its refolding capability towards lysozyme. In general, neutral CDs were better refolding agents than the charged sugars. The presence of anionic substituents like carboxyl and phosphate groups actually promoted aggregate formation and completely abolished the sugar's refolding ability. This effect was more pronounced with lysozyme than with carbonic anhydrase. CDs with cationic functional groups did not show any significant effects on lysozyme refolding. The presence of both anionic and cationic substituents on the same CD molecule was found to partially restore its renaturation ability. Electrophoresis data indicate that CDs, which promoted lysozyme refolding, arrested aggregation at the stage of smaller soluble aggregates. Interestingly, the structure-activity relationship observed with lysozyme was quite similar to that reported for a non-disulfide protein, carbonic anhydrase. These results suggest that the effects of CDs on protein refolding are attributed to their ability to suppress aggregation of proteins. CDs may show properties similar to chaotropic agents, which may help explain their anti-aggregation and protein refolding ability. Besides alpha-CD, a number of other neutral CDs were found to be effective protein folding aids.  相似文献   

13.
High-level expression of recombinant proteins in Escherichia coli frequently leads to the formation of insoluble protein aggregates, termed inclusion bodies. In order to recover a native protein from inclusion bodies, various protein refolding techniques have been developed. Column-based refolding methods and refolding in aqueous two-phase systems are often an attractive alternative to dilution refolding due to simultaneous purification and improved refolding yields. In this work, the effect of surface histidine mutations and their number on the partitioning and refolding of recombinant human granulocyte-colony stimulating factor Cys17Ser variant (rhG-CSF (C17S)) from solubilized inclusion bodies in aqueous two-phase systems polyethylene glycol (PEG)-dextran, containing metal ions, chelated by dye Light Resistant Yellow 2KT (LR Yellow 2KT)-PEG derivative, was investigated. Human G-CSF is a growth factor that regulates the production of mature neutrophilic granulocytes from the precursor cells. Initially, the role of His156 and His170 residues in the interaction of rhG-CSF (C17S) with Cu(II), Ni(II) and Hg(II) ions, chelated by LR Yellow 2KT-PEG, was investigated at pH 7.0 by means of affinity partitioning of purified, correctly folded rhG-CSF (C17S) mutants. It was determined that both His156 and His170 mutations reduced the affinity of rhG-CSF (C17S) for chelated Cu(II) ions at pH 7.0. His170 mutation significantly reduced the affinity of protein for chelated Ni(II) ions. However, histidine mutations had only a small effect on the affinity of protein for Hg(II) ions. The influence of His156 and His170 mutations on the refolding of rhG-CSF (C17S) from solubilized inclusion bodies in aqueous two-phase systems PEG-dextran, containing chelated Ni(II) and Hg(II) ions, was investigated. Reversible interaction of protein mutants with chelated metal ions was used for refolding in aqueous two-phase systems. Both histidine mutations resulted in a significant decrease of protein refolding efficiency in two-phase systems containing chelated Ni(II) ions, while in the presence of chelated Hg(II) ions their effect on protein refolding was negligible. Refolding studies of rhG-CSF variants with different number of histidine mutations revealed that a direct correlation exists between the number of surface histidine residues and refolding efficiency of rhG-CSF variant in two-phase systems containing chelated Ni(II) ions. This method of protein refolding in aqueous two-phase systems containing chelated metal ions should be applicable to other recombinant proteins that contain accessible histidine residues.  相似文献   

14.
The effects of various refolding additives, including metal cofactors, organic co‐solvents, and ionic liquids, on the refolding of horseradish peroxidase (HRP), a well‐known hemoprotein containing four disulfide bonds and two different types of metal centers, a ferrous ion‐containing heme group and two calcium atoms, which provide a stabilizing effect on protein structure and function, were investigated. Both metal cofactors (Ca2+ and hemin) and ionic liquids have positive impact on the refolding of HRP. For instance, the HRP refolding yield remarkably increased by over 3‐fold upon addition of hemin and calcium chloride to the refolding buffer as compared to that in the conventional urea‐containing refolding buffer. Moreover, the addition of ionic liquids [EMIM][Cl] to the hemin and calcium cofactor‐containing refolding buffer further enhanced the HRP refolding yield up to 80% as compared to 12% in conventional refolding buffer at relatively high initial protein concentration (5 mg/ml). These results indicated that refolding method utilizing metal cofactors and ionic liquids could enhance the yield and efficiency for metalloprotein.  相似文献   

15.
Inclusion body refolding processes play a major role in the production of recombinant proteins. Improvement of the size-exclusion chromatography refolding process was achieved by combining a decreasing urea gradient with an increasing arginine gradient (two gradients) for the refolding of NTA protein (a new thrombolytic agent) in this paper. Different refolding methods and different operating conditions in two gradients gel filtration process were investigated with regard to increasing the NTA protein activity recovery and inhibition of aggregation. The refolding of denatured NTA protein showed this method could significantly increase the activity recovery of protein at high protein concentration. The activity recovery of 37% was obtained from the initial NTA protein concentration up to 20 mg/ml. The conclusions presented in this study could also be applied to the refolding of lysozyme.  相似文献   

16.
Protein refolding is an important technique to produce active recombinant proteins from inclusion bodies. Because of the complexity of the refolding process, a trial‐and‐error method is usually used for its design, which is ineffective and time consuming. Therefore, an efficient method for the process prediction is indispensable to optimize the operating conditions. In this article, we suggest a design procedure for matrix‐assisted protein refolding. Three different chromatographic techniques were considered exploiting hydrophobic interaction chromatography, ion‐exchange chromatography, and SEC media. The procedure consisted of quantification of refolding kinetics, analysis of the retention behavior of all protein forms involved in refolding, construction of a dynamic model, and the process simulation. Denatured bovine α‐lactalbumin was used as model protein. The refolding rate was measured for different protein concentration using the batch dilution method. A kinetic scheme for the protein refolding was suggested and incorporated into a dynamic model of chromatographic column and used for predicting the refolding performance. The productivity, yield, and buffer consumption were used as performance indicators for the refolding techniques considered. The matrix‐assisted protein refolding process outperformed batch dilution method with respect to all indicators provided that efficient method for the process design was used.  相似文献   

17.
A recurring obstacle for structural genomics is the expression of insoluble, aggregated proteins. In these cases, the use of alternative salvage strategies, like in vitro refolding, is hindered by the lack of a universal refolding method. To overcome this obstacle, fractional factorial screens have been introduced as a systematic and rapid method to identify refolding conditions. However, methodical analyses of the effectiveness of refolding reagents on large sets of proteins remain limited. In this study, we address this void by designing a fractional factorial screen to rapidly explore the effect of 14 different reagents on the refolding of 33 structurally and functionally diverse proteins. The refolding data was analyzed using statistical methods to determine the effect of each refolding additive. The screen has been miniaturized for automation resulting in reduced protein requirements and increased throughput. Our results show that the choice of pH and reducing agent had the largest impact on protein refolding. Bis-mercaptoacetamide cyclohexane (BMC) and tris (2-carboxyethylphosphine) (TCEP) were superior reductants when compared to others in the screen. BMC was particularly effective in refolding disulfide-containing proteins, while TCEP was better for nondisulfide-containing proteins. From the screen, we successfully identified a positive synergistic interaction between nondetergent sulfobetaine 201 (NDSB 201) and BMC on Cdc25A refolding. The soluble protein resulting from this interaction crystallized and yielded a 2.2 Angstroms structure. Our method, which combines a fractional factorial screen with statistical analysis of the data, provides a powerful approach for the identification of optimal refolding reagents in a general refolding screen.  相似文献   

18.
A novel two-step protein refolding strategy has been developed, where continuous renaturation-bydilution is followed by direct capture on an expanded bed adsorption (EBA) column. The performance of the overall process was tested on a N-terminally tagged version of human beta2-microglobulin (HAT-hbeta2m) both at analytical, small, and preparative scale. In a single scalable operation, extracted and denatured inclusion body proteins from Escherichia coli were continuously diluted into refolding buffer, using a short pipe reactor, allowing for a defined retention and refolding time, and then fed directly to an EBA column, where the protein was captured, washed, and finally eluted as soluble folded protein. Not only was the eluted protein in a correctly folded state, the purity of the HAThbeta2m was increased from 34% to 94%, and the product was concentrated sevenfold. The yield of the overall process was 45%, and the product loss was primarily a consequence of the refolding reaction rather than the EBA step. Full biological activity of HAT-hbeta2m was demonstrated after removal of the HAT-tag. In contrast to batch refolding, a continuous refolding strategy allows the conditions to be controlled and maintained throughout the process, irrespective of the batch size; i.e., it is readily scalable. Furthermore, the procedure is fast and tolerant toward aggregate formation, a common complication of in vitro protein refolding. In conclusion, this system represents a novel approach to small and preparative scale protein refolding, which should be applicable to many other proteins.  相似文献   

19.
The protein refolding of inclusion bodies was investigated using reversed micelles formed by aerosol OT (AOT). Ribonuclease A (RNase A) was overexpressed in Escherichia coli and used as native inclusion bodies. The enzymatic activity of RNase A was completely regained from the inclusion bodies within 14 h by solubilization in reversed micelles. To further enhance the refolding rate, a molecular chaperone, GroEL, was incorporated into the refolding system. The resultant refolding system including GroEL showed better performance under optimized conditions for the refolding of RNase A inclusion bodies. The refolding rate was considerably improved by the addition of the molecular chaperone, and the refolding step was completed in 1 h. The protein refolding in the GroEL-containing refolding system was strongly dependent on the coexistence of ATP and Mg2+, suggesting that the GroEL hosted in the reversed micelles was biologically active and assisted in the renaturation of the inclusion bodies. The addition of cold acetone to the reversed micellar solution allowed over 90% recovery of the renatured RNase A.  相似文献   

20.
The "artificial chaperone method" for protein refolding developed by Rozema et al. (Rozema, D.; Gellman, S. H. J. Am. Chem. Soc. 1995, 117 (8), 2373-2374) involves the sequential dilution of denatured protein into a buffer containing detergent (cetyltrimethylammonium bromide, CTAB) and then into a refolding buffer containing cyclodextrin (CD). In this paper a simplified one-step artificial chaperone method is reported, whereby CTAB is added directly to the denatured solution, which is then diluted directly into a refolding buffer containing beta-cyclodextrin (beta-CD). This new method can be applied at high protein concentrations, resulting in smaller processing volumes and a more concentrated protein solution following refolding. The increase in achievable protein concentration results from the enhanced solubility of CTAB at elevated temperatures in concentrated denaturant. The refolding yields obtained for the new method were significantly higher than for control experiments lacking additives and were comparable to the yields obtained with the classical two-step approach. A study of the effect of beta-CD and CTAB concentrations on refolding yield suggested two operational regimes: slow stripping (beta-CD/CTAB approximately 1), most suited for higher protein concentrations, and fast stripping (beta-CD/CTAB approximately 2.7), best suited for lower protein concentrations. An increased chaotrope concentration resulted in higher refolding yields and an enlarged operational regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号