首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pathogenic bacteria in the Neisseriaceae possess a surface receptor mediating iron acquisition from human transferrin (hTf) that consists of a transmembrane iron transporter (TbpA) and a surface‐exposed lipoprotein (TbpB). In this study, we used hydrogen/deuterium exchange coupled to mass spectrometry (H/DX‐MS) to elucidate the effects on hTf by interaction with TbpB or derivatives of TbpB. An overall conserved interaction was observed between hTf and full‐length or N‐lobe TbpB from Neisseria meningitidis strains B16B6 or M982 that represent two distinct subtypes of TbpB. Changes were observed exclusively in the C‐lobe of hTf and were caused by the interaction with the N‐lobe of TbpB. Regions localized to the ‘lip’ of the C1 and C2 domains that flank the interdomain cleft represent sites of direct contact with TbpB whereas the peptides within the interdomain cleft that encompass iron binding ligands are inaccessible in the closed (holo) conformation. Although substantial domain separation upon binding TbpB cannot be excluded by the H/DX‐MS data, the preferred model of interaction involves binding hTf C‐lobe in the closed conformation. Alternate explanations are provided for the substantial protection from deuteration of the peptides encompassing iron binding ligands within the interdomain cleft but cannot be differentiated by the H/DX‐MS data.  相似文献   

2.
3.
4.
Abstract A method for purifying TBP2 from N. meningitidis has been developed using affirnity chromatography on Tf-agarose followed by ion exchange chromatography; the Tf-binding activity of fractions was evaluated by a dot-blot technique. This method allowed the purification of the TBP2 in milder conditions than those used previously and to a high degree of homogeneity as was demonstrated by Coomassie brilliant blue or Silver training after SDS-PAGE electrophoresis. The SDS-PAGE profile of the material obtained in the Tf-agarose affinity chromatography step shows only two detectable proteins, identified as the TBP1 and the TBP2, with a small amount of contamination. Passage through a MonoQ HR anion exchange column, allowed the isolation of TBP2 in the absence of TBP1. Our results demonstrate the conservation of the antigenic reactivity of this protein, which produces monospecific serum with the antibodies elicited reacting exclusively with the TBP2 in whole outer membrane vesicles.  相似文献   

5.
Increased levels of a 65-kDa stress protein (Msp65) were observed in group B Neisseria meningitidis grown under stationary-growth conditions. Electron microscopy showed two apposing rings of seven subunits, a structure typical of Escherichia coli GroEL. Msp65 was not found in either the periplasmic space or the outer membrane. Several important differences between the GroEL analogs of N. meningitidis and Neisseria gonorrhoeae are discussed.  相似文献   

6.
Expression of the meningococcal transferrin receptor, detected by assay with human transferrin conjugated to peroxidase, was regulated by the level of iron in the medium. The transferrin receptor was identified by SDS-PAGE and Western blot analysis, as a 71,000 molecular weight iron-regulated outer membrane protein in Neisseria meningitidis B16B6. Growth studies with iron-deficient cells and competition binding experiments demonstrated that the meningococcal receptor was species-specific for human transferrin. Reciprocal competitive binding experiments and limited proteolysis of intact cells indicated that the transferrin and lactoferrin receptors are distinct.  相似文献   

7.
Transferrin-binding protein 2 (Tbp2) from Neisseria is an outer membrane-associated extracellular lipoprotein that is involved in iron capture within the infected host. The analysis of tbp2 clones isolated from various bacterial strains revealed extensive divergences throughout the open reading frame (ORF), with predicted amino acid (aa) sequences displaying 47% to 83% identity. Such a variability is likely to have resulted from the selective pressure exerted by the host immune system, but raises questions regarding the existing constraints for conservation of protein function. Indeed, the neisserial Tbp2s include a large structured domain, extending throughout the N-terminal half of the protein (~270–290 aa), which is extremely stable and whose conformational integrity is required for efficient binding to human transferrin (hTf). In this work, a functional study of Tbp2s encoded by hybrid genes constructed by reassorting highly divergent tbp2 sequences in the region of the ORF encoding this structured domain was performed. The data demonstrate that the determinant intramolecular interactions allowing formation of a stable Tbp2 structure able to interact efficiently with hTf or/and that the Tbp2 residues involved in the interaction with hTf are not well conserved. However, a number of rearrangements appeared to generate genes encoding proteins which have retained structural stability and hTf-binding capacity. This suggested that despite the extreme aa sequence divergence and the conformational constraints, horizontal genetic exchanges, which are known to occur in neisserial populations, may have contributed significantly to the generation of sequence variation within tbp2 ORFs. The analysis of two tbp2clones characterized in this work supports this hypothesis.  相似文献   

8.
A protein of molecular weight of 64 kDa (p64k) found in the outer membrane of Neisseria meningitidis shows a high degree of homology with both the lipoyl domain of the acetyltransferase and the entire sequence of the lipoamide dehydrogenase, the E2 and E3 components of the dehydrogenase multienzyme complexes, respectively. The alignment of the p64k with lipoyl domains and lipoamide dehydrogenases from different species is presented. The possible implications of this protein in binding protein-dependent transport are discussed. This is the first lipoamide dehydrogenase reported to have a lipoyl domain. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Neisseria meningitidis carriers strains were isolated from 17-19 teenagers (n = 14) and recruits (n = 267). The longitudinal study comprises three meningococcal carriage trials performed on healthy young men during two--six months of their service in Polish military units. Altogether 54, 124 and 89 meningococcal strains were obtained during spring 1998 and autumn 1998, 1999 trials. Sixty two percent of meningococcal carrier strains were non-groupable, however among the remaining strains, serogroup B was predominant (29.5%). During spring 1998 and autumn 1999 trials the predominant phenotypes were N. meningitidis NG:21:P1.7, but during the autumn 1998 NG:21:P1.7 or NG:NT:P1.5. Ribotyping of type 21 and/or subtype P1.7 strains (n = 27) showed presence of 2 main ribotypes. Pulsed Field Gel Electrophoresis of consecutive isolates recovered from the same carrier showed great similarity of the patterns.  相似文献   

10.
Proper periplasmic disulfide bond formation is important for folding and stability of many secreted and membrane proteins, and is catalysed by three DsbA oxidoreductases in Neisseria meningitidis. DsbD provides reducing power to DsbC that shuffles incorrect disulfide bond in misfolded proteins as well as to the periplasmic enzymes that reduce apo-cytochrome c (CcsX) or repair oxidative protein damages (MrsAB). The expression of dsbD, but not other dsb genes, is positively regulated by the MisR/S two-component system. Quantitative real-time PCR analyses showed significantly reduced dsbD expression in all misR/S mutants, which was rescued by genetic complementation. The direct and specific interaction of MisR with the upstream region of the dsbD promoter was demonstrated by electrophoretic mobility shift assay, and the MisR binding sequences were mapped. Further, the expression of dsbD was found to be induced by dithiothrietol (DTT), through the MisR/S regulatory system. Surprisingly, we revealed that inactivation of dsbD can only be achieved in a strain carrying an ectopically located dsbD, in the dsbA1A2 double mutant or in the dsbA1A2A3 triple mutant, thus DsbD is indispensable for DsbA-catalysed oxidative protein folding in N. meningitidis. The defects of the meningococcal dsbA1A2 mutant in transformation and resistance to oxidative stress were more severe in the absence of dsbD.  相似文献   

11.
An effective vaccine for serogroup B meningococci has yet to be developed and attention has turned to subcapsular antigens of the meningococcus as possible vaccine candidates. Iron binding proteins are being studied, with most interest focused on the transferrin binding proteins (TbpA and TbpB) and the ferric binding protein (FbpA). This study describes the purification of lactoferrin binding protein A (LbpA) from two meningococcal strains and assesses the human isotype-specific serum antibody response to these proteins in patients with proven meningococcal disease due to a range of phenotypes. Overall, fewer than 50% of sera contained IgG that recognised LbpA isolated from either strain and this antibody response was not uniform between the two proteins. There was some evidence that the antibody response varied between meningococcal phenotypes. This study demonstrates that LbpA does not induce a highly cross-reactive antibody response, indicating that it is unlikely to be an effective vaccine antigen.  相似文献   

12.
RmpM is a putative peptidoglycan binding protein from Neisseria meningitidis that has been shown to interact with integral outer membrane proteins such as porins and TonB-dependent transporters. Here we report the 1.9 A crystal structure of the C-terminal domain of RmpM. The 150-residue domain adopts a betaalphabetaalphabetabeta fold, as first identified in Bacillus subtilis chorismate mutase. The C-terminal RmpM domain is homologous to the periplasmic, C-terminal domain of Escherichia coli OmpA; these domains are thought to be responsible for non-covalent interactions with peptidoglycan. From the structure of the OmpA-like domain of RmpM, we suggest a putative peptidoglycan binding site and identify residues that may be essential for binding. Both the crystal structure and solution experiments indicate that RmpM may exist as a dimer. This would promote more efficient peptidoglycan binding, by allowing RmpM to interact simultaneously with two glycan chains through its C-terminal, OmpA-like binding domain, while its (structurally uncharacterized) N-terminal domain could stabilize oligomers of porins and TonB-dependent transporters in the outer membrane.  相似文献   

13.
The meningococcal lactoferrin receptor is composed of the integral outer membrane protein LbpA and the peripheral lipoprotein LbpB. Homooligomeric complexes of LbpA and heterooligomers consisting of LbpA and LbpB were identified. Furthermore, five cell surface-exposed loops of LbpA were identified, which partially confirms a previously proposed topology model.  相似文献   

14.
Neisseria meningitidis is an important cause of septicemia and meningitis. To cause disease, the bacterium must successfully survive in the bloodstream where it has to avoid being killed by host innate immune mechanisms, particularly the complement system. A number of pathogenic microbes bind factor H (fH), the negative regulator of the alternative pathway of complement activation, to promote their survival in vivo. In this study, we show that N. meningitidis binds fH to its surface. Binding to serogroups A, B, and C N. meningitidis strains was detected by FACS and Far Western blot analysis, and occurred in the absence of other serum factors such as C3b. Unlike Neisseria gonorrhoeae, binding of fH to N. meningitidis was independent of sialic acid on the bacterium, either as a component of its LPS or its capsule. Characterization of the major fH binding partner demonstrated that it is a 33-kDa protein; examination of insertion mutants showed that porins A and B, outer membrane porins expressed by N. meningitidis, do not contribute significantly to fH binding. We examined the physiological consequences of fH bound to the bacterial surface. We found that fH retains its activity as a cofactor of factor I when bound to the bacterium and contributes to the ability of N. meningitidis to avoid complement-mediated killing in the presence of human serum. Therefore, the recruitment of fH provides another mechanism by which this important human pathogen evades host innate immunity.  相似文献   

15.
Iron-saturated human transferrin was digested with either chymotrypsin or trypsin to produce C-lobe and N-lobe protein fragments. Individual protein fragments were purified by a combination of gel filtration and Concanavalin A affinity chromatographic procedures. The C-lobe and N-lobe fragments of human transferrin were then used in binding assays to assess their ability in binding to the bacterial transferrin receptors. Competitive binding assays demonstrated that the C-lobe fragment of human transferrin binds as well as intact human transferrin to bacterial transterrin receptors from Neisseria meningitidis, Neisseria gonorrhoeae and Haemophlius influenzae. Using isogenic mutants of N. meningitidis deficient in either of the transferrin-binding proteins (Tbps), we demonstrated that both transferrin-binding proteins were able to bind to the C-lobe fragment of human transferrin.  相似文献   

16.
The pili of Neisseria meningitidis are a key virulence factor, being major adhesins of this capsulate organism that contribute to specificity for the human host. Recently it has been reported that meningococcal pili are post-translationally modified by the addition of an O-linked trisaccharide, Gal (β1–4) Gal (α1–3) 2,4-diacetimido-2,4,6-trideoxyhexose. Using a set of random genomic sequences from N. meningitidis strain MC58, we have identified a novel gene homologous to a family of glycosyltransferases. A plasmid clone containing the gene was isolated from a genomic library of N. meningitidis strain MC58 and its nucleotide sequence determined. The clone contained a complete copy of the gene, here designated pglA (pilin glycosylation). Insertional mutations were constructed in pglA in a range of meningococcal strains with well-defined lipopolysaccharide (LPS) or pilin-linked glycan structures to determine whether pglA had a role in the biosynthesis of these molecules. There was no alteration in the phenotype of LPS from pglA mutant strains as judged by gel migration and the binding of monoclonal antibodies. In contrast, decreased gel migration of the pilin subunit molecules of pglA mutants was observed, which was similar to the migration of pilins of galE mutants of same strains, supporting the notion that pglA is a glycosyltransferase involved in the biosynthesis of the pilin-linked trisaccharide structure. The pglA mutation, like the galE mutation reported previously, had no effect on pilus-mediated adhesion to human epithelial or endothelial cells. Pilin from pglA mutants were unable to bind to monospecific antisera recognizing the Gal (β1–4) Gal structure, suggesting that PglA is a glycosyltransferase involved in the addition of galactose of the trisaccharide substituent of pilin.  相似文献   

17.
《Gene》1998,208(1):51-59
Transferrin-binding protein B (TbpB) from Neisseria is an outer membrane-associated extracellular protein involved in iron capture during bacterial infection. The tbpB genes display extensive divergences throughout the open reading frame (ORF) that have presumably been selected under the pressure of the immune system. Early studies suggested that they could possibly constitute two distantly related groups of genes (sharing less than 57% identical nt). However, the analysis of one tbpB suggested the existence of a greater genetic diversity, and the occurrence of horizontal genetic exchanges leading to a rearrangement of highly divergent ORFs. This study has confirmed this and revealed the occurrence of genetic exchanges having involved at least three types of very distantly related tbpBs. These rearrangements resulted from recombination events having occurred at very similar positions within an ORF region encoding a highly structured protein domain, probably due to constraints imposed by protein function and mode(s) of folding. These new data also provide valuable tools for epidemiological studies and evaluation of TbpBs as candidate vaccines.  相似文献   

18.
Neisseria meningitidis is able to chelate iron from human transferrin (HTF), the main sequestrator of extracellular iron in vivo. Previous workers have reported that a ca. 70 kilodalton (kDa) iron regulated outer membrane protein (FeRP-70) is a highly specific receptor for HTF. We have examined the interaction between the iron regulated outer membrane proteins (OMP's) and HTF, using HTF and rabbit anti HTF, as well as gold labelled HTF (Au-HTF) to blot OMP's of various serogroups and serotypes of N. meningitidis. Also, we used monospecific rabbit anti FeRP-70 in competitive experiments to determine the role of FeRP-70 in HTF-binding. Single proteins (molecular weights range ca. 60 to ca. 90 kDa) were identified in the OMP's from each strain which reacted with HTF. HTF failed to block the reaction between FeRP-70 and the OMP's, conversely anti FeRP-70 failed to block the HTF-binding reaction. We believe that the 70 kDa iron regulated protein of N. meningitidis is not a human transferrin receptor.  相似文献   

19.
Peroxidase-conjugated transferrin was used to detect transferrin receptors both in intact outer membrane vesicles (OMVs) from Neisseria species in a dot blot assay, and in SDS-PAGE-separated OMV proteins after transferring to nitrocellulose membranes. All N. meningitidis strains produced transferrin receptors after culturing in either iron sufficiency or iron restriction although expression was higher in the latter case, whereas only six N. lactamica and two N. sicca (among 20 commensal species) were able to bind transferrin. Molecular mass (MM) of the receptors were mainly between 78 kDa and 85 kDa (87.5% of strains), 12.5% had receptors with MM close to 70 kDa, and 5% showed receptors with MM over 85 kDa. Our results confirm the molecular mass heterogeneity of the transferrin receptors in N. meningitidis, completely disagree with the 'universal' 98 kDa receptor proposed by some authors, and show a low expression of the receptor in commensal Neisseria.  相似文献   

20.
Abstract A gene library of Neisseria meningitidis B15 P1.16 DNA was established in λ Zap II and clones containing DNA encoding transferrin binding protein 1 (TBP-1) identified following hybridisation with a 63-bp DNA probe based on the codon assignment for the first 21 N-terminal amino acids of TBP-1. Sequencing of the cloned DNA demonstrated that all of the intergenic DNA (i.e. upstream of bp-1 running through to the 3' end of the transferrin-binding protein 2 gene) and approx. 15% of tbp-1 had been cloned. The complete gene was generated using a polymerase chain reaction, with the primer for the 3' end being based on tbp-A of N. gonorrhoeae , and the approx. 2.9-kb DNA product cloned into pGem-3Z. The expressed protein (approx. 100 kDa) reacted with antiserum to an N-terminal peptide of TBP-1. In addition, the native product was surface-expressed by Escherichia coli and bound human transferrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号