首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation of a Cellodextrinase from Bacteroides succinogenes   总被引:21,自引:13,他引:8       下载免费PDF全文
An enzyme which released the cellobiose group from p-nitrophenyl cellobioside was isolated from the periplasmic space of Bacteroides succinogenes grown on Avicel crystalline cellulose in a continuous cultivation system and separated from endoglucanases by column chromatography. The molecular weight of the enzyme was approximately 40,000, as estimated by gel filtration. The enzyme has an isoelectric point of 4.9. The enzyme exhibited low hydrolytic activity on acid-swollen cellulose and practically no activity on carboxymethyl cellulose, Avicel cellulose, and cellobiose, but it hydrolyzed p-nitrophenyl lactoside and released cellobiose from cellotriose and from higher cello-oligosaccharides. These data demonstrate that the enzyme is a cellodextrinase with an exotype of function.  相似文献   

2.
Metabolic engineering has been successful in generating highly efficient Escherichia coli catalysts for production of biofuels and other useful products. However, most of these engineered biocatalysts are only effective when glucose is used as the starting substrate. Strategies to overcome this limitation in the past almost exclusively relied on extracellular secretion or surface display of a β-glucosidase. We show here, for the first time, a periplasmic expression of a Sacchrophagus degradans cellodextrinase (Ced3A) as a successful strategy to enable E. coli to use cellodextrin. The engineered strain was able to grow with cellodextrin as sole carbon source. Additionally, we show that penetration of cellodextrin into periplasmic space was enhanced by using a mutant with leaky outer membrane. Furthermore, we demonstrate that the catalyst can efficiently ferment cellodextrin to lactic acid with about 80 % yield. The ability of a biocatalyst to use cellodextrin should make it useful in consolidated bioprocessing of cellulose.  相似文献   

3.
Many bacteria secrete cellulose, which forms the structural basis for bacterial multicellular aggregates, termed biofilms. The cellulose synthase complex of Salmonella typhimurium consists of the catalytic subunits BcsA and BcsB and several auxiliary subunits that are encoded by two divergently transcribed operons, bcsRQABZC and bcsEFG. Expression of the bcsEFG operon is required for full-scale cellulose production, but the functions of its products are not fully understood. This work aimed to characterize the BcsG subunit of the cellulose synthase, which consists of an N-terminal transmembrane fragment and a C-terminal domain in the periplasm. Deletion of the bcsG gene substantially decreased the total amount of BcsA and cellulose production. BcsA levels were partially restored by the expression of the transmembrane segment, whereas restoration of cellulose production required the presence of the C-terminal periplasmic domain and its characteristic metal-binding residues. The high-resolution crystal structure of the periplasmic domain characterized BcsG as a member of the alkaline phosphatase/sulfatase superfamily of metalloenzymes, containing a conserved Zn2+-binding site. Sequence and structural comparisons showed that BcsG belongs to a specific family within alkaline phosphatase-like enzymes, which includes bacterial Zn2+-dependent lipopolysaccharide phosphoethanolamine transferases such as MCR-1 (colistin resistance protein), EptA, and EptC and the Mn2+-dependent lipoteichoic acid synthase (phosphoglycerol transferase) LtaS. These enzymes use the phospholipids phosphatidylethanolamine and phosphatidylglycerol, respectively, as substrates. These data are consistent with the recently discovered phosphoethanolamine modification of cellulose by BcsG and show that its membrane-bound and periplasmic parts play distinct roles in the assembly of the functional cellulose synthase and cellulose production.  相似文献   

4.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   

5.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   

6.
Glutamine synthetase (GS) and NADP-dependent glutamate dehydrogenase (NADP-GDH) play a key role in nitrogen assimilation in the ectomycorrhizal fungus Laccaria laccata (Scop. ex Fr. Cke) strain S 238. The two enzymes were purified to apparent electrophoretic homogeneity by a three-step procedure involving diethylaminoethyl (DEAE)-Trisacryl and affinity chromatography, and DEAE-5PW fast protein liquid chromatography. This purification scheme resulted in a 23 and 62% recovery of the initial activity for GS and NADP-GDH, respectively. Purified GS had a specific activity of 713 nanomoles per second per milligram protein and a pH optimum of 7.2. Michaelis constants (millimolar) for the substrates were NH4+ (0.024), glutamate (3.2), glutamine (30), ATP (0.18), and ADP (0.002). The molecular weight (Mr) of native GS was approximately 380,000; it was composed of eight identical subunits of Mr 42,000. Purified NADP-GDH had a specific activity of 4130 nanomoles per second per milligram protein and a pH optimum of 7.2 (amination reaction). Michaelis constants (millimolar) for the substrates were NH4+ (5), 2-oxoglutarate (1), glutamate (26), NADPH (0.01), and NADP (0.03). Native NADP-GDH was a hexamer with a Mr of about 298,000 composed of identical subunits with Mr 47,000. Polyclonal antibodies were produced against purified GS and NADP-GDH. Immunoprecipitation tests and immunoblot analysis showed the high reactivity and specificity of the immune sera against the purified enzymes.  相似文献   

7.
Isonicotinic acid hydrazide (Isoniazid, INH) is one of the major drugs worldwide used in the chemotherapy of tuberculosis. Many investigators have emphasized that INH activation is associated with mycobacterial catalase-peroxidase (katG). However, INH activation mechanism is not completely understood. In this study, katG of M. bovis BCG was separated and purified into two katGs, katG I (named as relatively higher molecular weight than katG II) and katG II, indicating that there is some difference in protein structure between two katGs. The molecular weight of the enzymes of katG I and katG II was estimated to be approximately 150,000 Da by gel filtration, and its subunit was 75,000 Da as determined by SDS-PAGE, indicating that purified enzyme was composed of two identical subunits. The specific activity of the purified enzyme katG I was 991.1 (units/mg). The enzymes were then investigated in INH activation by using gas chromatography mass spectrometry (GC-MS). The analysis of GC-MS showed that the katG I from M. bovis BCG directly converted INH (Mr, 137) to isonicotinamide (Mr, 122), not to isonicotinic acid (Mr, 123), in the presence or absence of H2O2. Therefore, this is the first report that katG I, one of two katGs with almost same molecular weight existed in M. bovis BCG, converts INH to isonicotinamide and this study may give us important new light on the activation mechanism of INH by KatG between M. bovis BCG and M. tuberculosis.  相似文献   

8.
The Dictyostelium discoideum membrane-bound and extracellular cyclic nucleotide phosphodiesterases (EC 3.1.4.17) shear several properties including the ability to react with a specific glycoprotein inhibitor and small inhibitory molecules. We have partialy purified the membrane-bound enzyme and compared its properties to those of the extracellular form. The kinetic properties of the two forms were similar except that, while associated with membrane particles, the membrane-bound form exhibited non-linear kinetics when assayed ove a broad substrate range. The isoelectric point of the membrane-bound phosphodiesterase was identical to that of the extracellular enzyme when isoelectrofocusing was done in the presence of 6 M urea. The molecular weights of membrane-bound and extracellular enzyme, determined by gel filtration, were the same following isoelectrofocusing in the presence of 6 M urea. When precipitated with an antiserum prepared against purified extracellular phosphodiesterase, the partially purified membrane-bound enzyme preparation was shown to contain a Mr 50 000 polypeptide comigrating with the extracellular enzyme during SDS polyacrylamide gel electrophoresis. When the iodinated extracellular enzyme and the iodinated Mr 50 000 polypeptide from membrane-bound enzyme were subjected to partial proteolytic digestion, similar profiles were obtained indicating extensive regions of homology.  相似文献   

9.
Constitutively produced extracellular pectinesterases from culture filtrates of the potato late blight fungus Phytophthora infestans were purified and characterized. One enzyme (PE II) was purified to homogeneity. Sodium dodecyl sulfate electrophoresis of the second enzyme (PE I) revealed two protein bands; there are indications that both proteins are pectinesterases, which were not separable by a number of different techniques. Thus, P. infestans might produce three pectinesterases in vitro. Enzyme activities were optimal in the neutral pH range and were largely dependent on the presence of NaCl or CaCl2 in the reaction medium. The molecular weight of the PE I-complex was between 45 and 48 kilodaltons, and the one of PE II was between 35 and 40 kilodaltons. Further investigations will help us to clarify the role of these enzymes during pathogenesis.  相似文献   

10.
《Anaerobe》2001,7(5):263-269
A small soluble protein, periplasmic tetraheme cytochrome c3, was purified fromDesulphovibrio desulfuricans M6 and its gene, dmc, was cloned and the complete nucleotide sequence determined. The purity index of purified cytochrome c3was 3.3 and the molecular weight was determined as 14.5 kDa by SDS-PAGE. It was found that the 387 bp of dmc gene encoded 21 amino acids of hydrophobic signal peptide and 107 residues of apoprotein. The nucleotide sequence and the predicted amino acid sequence of dmc showed 76% and 83% identities to those of 13 kDa cytochrome c3from D. desulphuricans ATCC 27774, respectively.dmc gene was functionally expressed in aerobically grown Escherichia coli BL-21(DE3) by co-expressing eightccm genes which were reported to be involved in cytochrome c maturation. The molecular weight of overexpressed holocytochrome c3was identical to that of the original protein. Visible spectrum of dithionite-reduced form exhibited typical characteristics of c -type cytochromes. In addition, the redox potential was measured to −340 mV by cyclic voltammetry.  相似文献   

11.
Pullulanase type I of Geobacillus thermoleovorans US105 strain (PUL US105) was produced and secreted efficiently in the E. coli periplasmic or extracellular fraction using two different signal peptides. Hence, the open reading frame was connected downstream of the lipase A signal peptide of Bacillus subtilis strain leading to an efficient secretion of an active form enzyme on the periplasmic fraction. In addition, pul US105 was fused to the α-amylase signal sequence of the Bacillus stearothermophilus US100 strain. The monitoring of the pullulanase activity and Western blot analysis for this last construction showed that the most activity was found in the supernatant culture, proving the efficient secretion of this natively cytoplasmic enzyme as an active form. The PUL US105 was purified to homogeneity from the periplasmic fraction, using heat treatment, size exclusion, and anion-exchange chromatography. The native pullulanase has a molecular mass of 160 kDa and is composed of two identical subunits of 80 kDa each. It was independent for metallic ions for its activity, while its thermostability was obviously improved in presence of only 0.1 mM CaCl2.  相似文献   

12.
Phenylalanyl-tRNA synthetase (l-phenylalanine:tRNA ligase [AMP], EC 6.1.1.b) from the ribosomal and the postribosomal cell supernatant fractions of rabbit reticulocytes were purified separately and characterized. Phenylalanyl-tRNA synthetase from the ribosomal fraction was purified 114-fold to a final specific activity of 1603 units/mg and is approximately 90% pure. Phenylalanyl-tRNA synthetase from the postribosomal supernatant fraction was purified 4186-fold to a final specific activity of 247 units/mg. The enzymes from the two fractions appear to be identical based on their elution from various chromatographic media, sedimentation coefficient, pH, Mg2+, and K+ optima, and heat stability. Phenylalanyl-tRNA synthetase from rabbit reticulocytes has a molecular weight of approximately 245,000 with an α2β2 subunit structure. The molecular weights of the subunits are 57,000 and 67,200.  相似文献   

13.
Cell wall-bound invertases (EC 3.2.1.26) from both sugar beet seedlings and aged slices of mature roots were purified to homogeneity separately with CM-cellulose chromatography and Bio-Gel P-150 gel filtrations. The enzymes behaved similarly throughout the purification procedures. The purified enzymes are identical as characterized by specific activity, gel electrophoretic mobility, Km for sucrose and raffinose (1.33 and 4.0 millimolar, respectively), mobility on Bio-Gel P-150 (molecular weight 28,000), optimum pH (4.6 to 5.0), optimum temperature, and dependence on NaCl concentration for insolubilization by DNA. The results suggest that the enzymes may be encoded for by the same structural gene.  相似文献   

14.
Polyclonal and monoclonal antibodies to the Cl-stimulated cellobiosidase of Fibrobacter succinogenes subsp. succinogenes S85 reacted with numerous proteins of both higher and lower molecular weights from F. succinogenes subsp. succinogenes S85, but not with Escherichia coli proteins, and only one protein each from Butyrivibrio fibrisolvens and Ruminococcus albus. Different profiles were observed for Western blots (immunoblots) of peptide digests of both the purified enzyme from F. succinogenes and immunoreactive proteins of higher and lower molecular weights, demonstrating that they were different proteins. Therefore, F. succinogenes appeared to produce numerous proteins with one or more common antigenic determinants. However, with the exception of Cl-stimulated cellobiosidase, none were cellulases that have been characterized. An affinity-purified polyclonal antibody to Cl-stimulated cellobiosidase reacted with numerous proteins in cells of each of three fresh isolates of F. succinogenes subsp. succinogenes and one of F. succinogenes subsp. elongata when analyzed by Western blotting. Antibodies to periplasmic cellodextrinase, endoglucanase 2 (EG2), and EG3, when reacted in Western blots with the various cellulases, including Cl-stimulated cellobiosidase, revealed limited antigenic similarity among the different proteins and none with either B. fibrisolvens or R. albus proteins. The periplasmic cellodextrinase antibody reacted with an antigen with a size corresponding to cellodextrinase in each of the three F. succinogenes subsp. succinogenes isolates but not with any antigens from the F. succinogenes subsp. elongata isolate. The anti-EG2 antibody reacted with single antigens in each of the four isolates, while the anti-EG3 antibody reacted with only one of the four isolates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
《Gene》1997,189(2):163-168
A gene (empV) encoding the extracellular metalloprotease of Vibrio vulnificus CKM-1 has been cloned and sequenced. When the empV gene was expressed in minicells, a unique peptide of approx. 46 kDa was identified. Protease activity staining experiments also indicated a similar Mr for the protease. The empV gene product (EmpV) is secreted into the periplasm of Escherichia coli, but not out of it. The crude enzyme prepared from the periplasmic fraction of recombinant E. coli was inhibited by a metalloprotease inhibitor and Zn2+ is essential for its protease activity. Nucleotide sequence analysis predicted a single open reading frame (ORF) of 1818 bp encoding a 606 amino acid (aa) polypeptide, with a potential 24 aa signal peptide followed by a long `pro' sequence consisting of 172 aa. The N-terminal 20 aa sequence for the elastolytic protease (EepV), purified from the culture supernatant of V. vulnificus ATCC 29307, completely identified the beginning of the predicted mature protein within the deduced aa sequence except for 1 aa residue difference. The estimated pI and molecular weight of the predicted mature protein were 5.86 and 44.3 kDa, respectively, which are nearly identical to those of V. vulnificus L-180 extracellular neutral metalloprotease (EnmV) and of strain ATCC 29307 EepV. The estimated molecular weight also closely matches that determined by SDS-PAGE analysis of the minicells and by protease activity staining. The deduced aa sequence of EmpV showed high homology to V. anguillarum metalloprotease (EmpA), V. cholerae HA/protease (HprC), and V. proteolyticus neutral protease (NprP), particularly with respect to active-site residues, zinc-binding residues, and cysteine residues.  相似文献   

16.
Vegetative microplasmodia of the slime mold, Physarum polycephalum, produce an intracellular β-N-acetylhexosaminidase enzyme when grown on a medium containing 1% glucose, 0.15% yeast extract, and 1% peptone. When early log-phase microplasmodia are induced to differentiate to spherules by starvation in a salts medium, they excrete an extracellular β-N-acetylhexosaminidase. Both of these enzymes have been purified to apparent homogeneity. Characterization studies showed that the extracellular enzyme was nonidentical to the preexisting, vegetative enzyme and the enzyme in completed spherules. Evidence demonstrating dissimilarities between the two proteins included marked differences in (i) specificities for several natural and synthetic substrates, (ii) various kinetic parameters, (iii) relative net charges as evidenced by different elution behavior from similar DE-52 cellulose chromatography columns, (iv) carbohydrate contents, and (v) subunit polypeptide molecular weights. Conclusive evidence for their nonidentity was shown in their respective amino acid compositions and divergent immunological properties. The extracellular β-N-acetylhexosaminidase demonstrated a subunit molecular weight of 25,300; the intracellular enzyme subunit molecular weight was 40,500. The extracellular enzyme, with the smaller polypeptide subunit, contained 1.79 times as many aromatic amino acid residues in tyrosine, phenylalanine, and tryptophan as the intracellular enzyme. Thus, the extracellular enzyme could not have been comprised of subunits derived from limited proteolytic hydrolysis of the larger subunits of the intracellular enzyme. Rabbit antisera prepared against each purified β-N-acetylhexosaminidase failed to yield precipitin bands with the heterologous antigen in immunodiffusion tests. Thus, apparently distinct structural genes code for these two enzymes and they may serve different, but unidentified, physiological functions.  相似文献   

17.
Three different isoforms of invertases have been detected in the developing internodes of barley (Hordeum vulgare). Based on substrate specificities, the isoforms have been identified to be invertases (β-fructosidases EC 3.2.1.26). The soluble (cytosolic) invertase isoform can be purified to apparent homogeneity by diethylaminoethyl cellulose, Concanavalin-A Sepharose, organomercurial Sepharose, and Sephacryl S-300 chromatography. A bound (cell wall) invertase isoform can be released by 1 molar salt and purified further by the same procedures as above except omitting the organo-mercurial Sepharose affinity chromatography step. A third isoform of invertase, which is apparently tightly associated with the cell wall, cannot be isolated yet. The soluble and bound invertase isoforms were purified by factors of 60- and 7-fold, respectively. The native enzymes have an apparent molecular weight of 120 kilodaltons as estimated by gel filtration. They have been identified to be dimers under denaturing and nondenaturing conditions. The soluble enzyme has a pH optimum of 5.5, Km of 12 millimolar, and a Vmax of 80 micromole per minute per milligram of protein compared with cell wall isozyme which has a pH optimum of 4.5, Km of millimolar, and a Vmax of 9 micromole per minute per milligram of protein.  相似文献   

18.
Among 180 Streptomyces strains tested, 25 were capable of hydrolyzing microcrystalline cellulose (Avicel) at 30°C. Streptomyces reticuli was selected for further studies because of its ability to grow at between 30 and 50°C on Avicel. Enzymatic activities degrading Avicel, carboxymethyl cellulose, and cellobiose were found both in the culture supernatant and in association with the mycelium and crystalline substrate. The bound enzymes were efficiently solubilized by repeated washes with buffer of low ionic strength (50 mM Tris hydrochloride [pH 7.5]) and further purified by fast protein liquid chromatography. A high-molecular-weight Avicelase of >300 kilodaltons could be separated from carboxymethyl cellulase (CMCase) and β-glucosidase activities (molecular mass, 40 to 50 kilodaltons) by gel filtration on Superose 12. The CMCase fraction was resolved by Mono Q anion-exchange chromatography into two enzymes designated CMCase 1 and CMCase 2. The β-glucosidase activity was found to copurify with CMCase 2. The purified cellulase components showed optimal activity at around pH 7.0 and temperatures of between 45 and 50°C. Avicelase (but not CMCase) activity was stimulated significantly by the addition of CaCl2.  相似文献   

19.
The filamentous fungus Penicillium brasilianum IBT 20888 was cultivated on a mixture of 30 g l−1 cellulose and 10 g l−1 xylan for 111 h and the resulting culture filtrate was used for protein purification. From the cultivation broth, five cellulases and one xylanase were purified. Hydrolysis studies revealed that two of the cellulases were acting as cellobiohydrolases by being active on only microcrystalline cellulose (Avicel). Three of the cellulases were active on both Avicel and carboxymethyl cellulose indicating endoglucanase activity. Two of these showed furthermore mannanase activity by being able to hydrolyze galactomannan (locust bean gum). Adsorption studies revealed that the smaller of the two enzymes was not able to bind to cellulose. Similarity in molecular mass, pI and hydrolytic properties suggested that these two enzymes were identical, but the smaller one was lacking the cellulose-binding domain or an essential part of it. The basic xylanase (pI>9) was only active towards xylan. Two of the purified cellulases with endoglucanase activity were partly sequenced and based on sequence homology with known enzymes they were classified as belonging to families 5 and 12 of the glycosyl hydrolases.  相似文献   

20.
Polyclonal and monoclonal antibodies to the Cl-stimulated cellobiosidase of Fibrobacter succinogenes subsp. succinogenes S85 reacted with numerous proteins of both higher and lower molecular weights from F. succinogenes subsp. succinogenes S85, but not with Escherichia coli proteins, and only one protein each from Butyrivibrio fibrisolvens and Ruminococcus albus. Different profiles were observed for Western blots (immunoblots) of peptide digests of both the purified enzyme from F. succinogenes and immunoreactive proteins of higher and lower molecular weights, demonstrating that they were different proteins. Therefore, F. succinogenes appeared to produce numerous proteins with one or more common antigenic determinants. However, with the exception of Cl-stimulated cellobiosidase, none were cellulases that have been characterized. An affinity-purified polyclonal antibody to Cl-stimulated cellobiosidase reacted with numerous proteins in cells of each of three fresh isolates of F. succinogenes subsp. succinogenes and one of F. succinogenes subsp. elongata when analyzed by Western blotting. Antibodies to periplasmic cellodextrinase, endoglucanase 2 (EG2), and EG3, when reacted in Western blots with the various cellulases, including Cl-stimulated cellobiosidase, revealed limited antigenic similarity among the different proteins and none with either B. fibrisolvens or R. albus proteins. The periplasmic cellodextrinase antibody reacted with an antigen with a size corresponding to cellodextrinase in each of the three F. succinogenes subsp. succinogenes isolates but not with any antigens from the F. succinogenes subsp. elongata isolate. The anti-EG2 antibody reacted with single antigens in each of the four isolates, while the anti-EG3 antibody reacted with only one of the four isolates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号