共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Otter S Grimmler M Neuenkirchen N Chari A Sickmann A Fischer U 《The Journal of biological chemistry》2007,282(8):5825-5833
Assembly of the Sm-class of U-rich small nuclear ribonucleoprotein particles (U snRNPs) is a process facilitated by the macromolecular survival of motor neuron (SMN) complex. This entity promotes the binding of a set of factors, termed LSm/Sm proteins, onto snRNA to form the core structure of these particles. Nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and unrip have been identified as the major components of the SMN complex. So far, however, only little is known about the architecture of this complex and the contribution of individual components to its function. Here, we present a comprehensive interaction map of all core components of the SMN complex based upon in vivo and in vitro methods. Our studies reveal a modular composition of the SMN complex with the three proteins SMN, Gemin8, and Gemin7 in its center. Onto this central building block the other components are bound via multiple interactions. Furthermore, by employing a novel assay, we were able to reconstitute the SMN complex from individual components and confirm the interaction map. Interestingly, SMN protein carrying an SMA-causing mutation was severely impaired in formation of the SMN complex. Finally, we show that the peripheral component Gemin5 contributes an essential activity to the SMN complex, most likely the transfer of Sm proteins onto the U snRNA. Collectively, the data presented here provide a basis for the detailed mechanistic and structural analysis of the assembly machinery of U snRNPs. 相似文献
3.
4.
Paushkin S Charroux B Abel L Perkinson RA Pellizzoni L Dreyfuss G 《The Journal of biological chemistry》2000,275(31):23841-23846
Spinal muscular atrophy is a common often lethal neurodegenerative disease resulting from deletions or mutations in the survival motor neuron gene (SMN). SMN is ubiquitously expressed in metazoan cells and plays a role in small nuclear ribonucleoprotein assembly and pre-mRNA splicing. Here we characterize the Schizosacharomyces pombe orthologue of SMN (yeast SMN (ySMN)). We report that the ySMN protein is essential for viability and localizes in both the cytoplasm and the nucleus. Like human SMN, we show that ySMN can oligomerize. Remarkably, ySMN interacts directly with human SMN and Sm proteins. The highly conserved carboxyl-terminal domain of ySMN is necessary for the evolutionarily conserved interactions of SMN and required for cell viability. We also demonstrate that the conserved amino-terminal region of ySMN is not required for SMN and Sm binding but is critical for the housekeeping function of SMN. 相似文献
5.
Ebright RH 《Journal of molecular biology》2000,304(5):687-698
Bacterial RNA polymerase and eukaryotic RNA polymerase II exhibit striking structural similarities, including similarities in overall structure, relative positions of subunits, relative positions of functional determinants, and structures and folding topologies of subunits. These structural similarities are paralleled by similarities in mechanisms of interaction with DNA. 相似文献
6.
7.
8.
9.
A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. 总被引:9,自引:0,他引:9
Philip J Young Patricia M Day Jianhua Zhou Elliot J Androphy Glenn E Morris Christian L Lorson 《The Journal of biological chemistry》2002,277(4):2852-2859
Mutations in the SMN1 (survival motor neuron 1) gene cause spinal muscular atrophy (SMA). We now show that SMN protein, the SMN1 gene product, interacts directly with the tumor suppressor protein, p53. Pathogenic missense mutations in SMN reduce both self-association and p53 binding by SMN, and the extent of the reductions correlate with disease severity. The inactive, truncated form of SMN produced by the SMN2 gene in SMA patients fails to bind p53 efficiently. SMN and p53 co-localize in nuclear Cajal bodies, but p53 redistributes to the nucleolus in fibroblasts from SMA patients. These results suggest a functional interaction between SMN and p53, and the potential for apoptosis when this interaction is impaired may explain motor neuron death in SMA. 相似文献
10.
11.
12.
13.
Li Y Takagi Y Jiang Y Tokunaga M Erdjument-Bromage H Tempst P Kornberg RD 《The Journal of biological chemistry》2001,276(32):29628-29631
A three-subunit Hap complex that interacts with the RNA polymerase II Elongator was isolated from yeast. Deletions of genes for two Hap subunits, HAP1 and HAP3, confer pGKL killer-insensitive and weak Elongator phenotypes. Preferential interaction of the Hap complex with free rather than RNA polymerase II-associated Elongator suggests a role in the regulation of Elongator activity. 相似文献
14.
15.
16.
17.
Met-tRNAf bound at low Mg ion concentrations to rabbit reticulocyte 40 S ribosomal subunits in the presence of ApUpG and a eukaryotic tRNA binding factor serves readily as a substrate for a Met-tRNA hydrolase from rabbit reticulocytes. This hydrolysis occurs rapidly at 0 °C, appears to be specific for Met-tRNAf, and is not inhibited by 60 S ribosomal subunits. These reactions may be responsible for the accumulation of deacylated tRNAfMet observed in ribosomes isolated from sodium fluoride-treated cells. 相似文献
18.
19.
Carissimi C Saieva L Gabanella F Pellizzoni L 《The Journal of biological chemistry》2006,281(48):37009-37016
The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) in higher eukaryotes requires the functions of several cellular proteins and includes nuclear as well as cytoplasmic phases. In the cytoplasm, a macromolecular complex containing the survival motor neuron (SMN) protein, Gemin2-8 and Unrip mediates the ATP-dependent assembly of Sm proteins and snRNAs into snRNPs. To carry out snRNP assembly, the SMN complex binds directly to both Sm proteins and snRNAs; however, the contribution of the individual components of the SMN complex to its composition, interactions, and function is poorly characterized. Here, we have investigated the functional role of Gemin8 using novel monoclonal antibodies against components of the SMN complex and RNA interference experiments. We show that Gemin6, Gemin7, and Unrip form a stable cytoplasmic complex whose association with SMN requires Gemin8. Gemin8 binds directly to SMN and mediates its interaction with the Gemin6/Gemin7 heterodimer. Importantly, loss of Gemin6, Gemin7, and Unrip interaction with SMN as a result of Gemin8 knockdown affects snRNP assembly by impairing the SMN complex association with Sm proteins but not with snRNAs. These results reveal the essential role of Gemin8 for the proper structural organization of the SMN complex and the involvement of the heteromeric subunit containing Gemin6, Gemin7, Gemin8, and Unrip in the recruitment of Sm proteins to the snRNP assembly pathway. 相似文献