共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane was partly purified by treatments with sodium cholate and lysophosphatidylcholine, and by isopycnic centrifugation on sucrose gradients. The ATPase activity had high sensitivity to detergents, poor nucleotide specificity and broad tolerance for divalent cations. It was insensitive to mitochondrial ATPase inhibitors such as oligomycin and to transport ATPase inhibitors such as vanadate and ouabain. Using the cholate dialysis procedure, the partly purified enzyme was incorporated into asolectin vesicles. Upon addition of Mg2+-ATP, fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine (ACMA) was observed. The quenching was abolished by a protonophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Asolectin vesicles or purified ATPase alone failed to promote quenching. These data suggest that the Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane is able of H+-translocation coupled to ATP hydrolysis. 相似文献
2.
The assignment of the Ca2+-ATPase activity of chromaffin granules to the proton translocating ATPase
CaATP is shown to function as a substrate for the proton translocating ATPase of chromaffin granule ghosts at concentrations which are comparable to that of MgATP. Using the initial rate of the proton pump activity as the measure (delta pH/delta t), an apparent Km-value of 139 +/- 8 microM was estimated for CaATP and 59 +/- 3 microM for MgATP. The maximal rate was markedly higher with MgATP than with CaATP, partly due to an inhibition of the hydrolytic activity at the higher concentrations of CaATP. The proton pump activity with CaATP was inhibited by N-ethylmaleimide and N,N'-dicyclohexylcarbodiimide at concentrations similar to that found for MgATP. No inhibition was observed with sodium vanadate in the concentration range 0-15 microM. Calmodulin and trifluoperazine had no effect on the overall ATPase activity with CaATP. These findings establish this activity as an intrinsic property of the chromaffin granules, i.e., linked to the H+-ATPase. No evidence was obtained for the presence of a Ca2+-translocating ATPase [Ca2+ + Mg2+)-ATPase) in the chromaffin granules. 相似文献
3.
Evidence that the platelet plasma membrane does not contain a (Ca2+ + Mg2+)-dependent ATPase 总被引:1,自引:0,他引:1
The present study was designed to determine the subcellular distribution of the platelet (Ca2+ + Mg2+)-ATPase. Human platelets were surface labeled by the periodate-boro[3H]hydride method. Plasma membrane vesicles were then isolated to a purity of approx. 90% by a procedure utilizing wheat germ agglutinin affinity chromatography. These membranes were found to be 2.6-fold enriched in surface glycoproteins compared to an unfractionated vesicle fraction and almost 7-fold enriched compared to intact platelets. In contrast, the isolated plasma membranes showed a decreased specific activity of the (Ca2+ + Mg2+)-ATPase compared to the unfractionated vesicle fraction. This decrease in specific activity was found to be similar to that of an endoplasmic reticulum marker, glucose-6-phosphatase, and to that of a platelet inner membrane marker, phospholipase A2. We conclude, therefore, that the (Ca2+ + Mg2+)-ATPase is not located in the platelet plasma membrane but is restricted to membranes of intracellular origin. 相似文献
4.
5.
6.
Auxin regulation of a proton translocating ATPase in pea root plasma membrane vesicles 总被引:3,自引:4,他引:3 下载免费PDF全文
Pea root microsomal vesicles have been fractionated on a Dextran step gradient to give three fractions, each of which carries out ATP-dependent proton accumulation as measured by fluorescence quenching of quinacrine. The fraction at the 4/6% Dextran interface is enriched in plasma membrane, as determined by UDPG sterol glucosyltransferase and vanadate-inhibited ATPase. The vanadate-sensitive phosphohydrolase is not specific for ATP, has a Km of about 0.23 millimolar for MgATP, is only slightly affected by K+ or Cl− and is insensitive to auxin. Proton transport, on the other hand, is more specific for ATP, enhanced by anions (NO3− > Cl−) and has a Km of about 0.7 millimolar. Auxins decrease the Km to about 0.35 millimolar, with no significant effect on the Vmax, while antiauxins or weak acids have no such effect. It appears that auxin has the ability to alter the efficiency of the ATP-driven proton transport. 相似文献
7.
Localization of (Ca2+ + Mg2+)-ATPase, Ca2+ pump and other ATPase activities in cardiac sarcolemma 总被引:2,自引:0,他引:2
N C Morcos 《Biochimica et biophysica acta》1982,688(3):747-756
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1.10(-4) M. The sarcolemmal markers, ouabain-sensitive (Na+ +K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ +Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27-39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ +Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ +Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K1/2 for inhibition approx. 1.5 microM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles. 相似文献
8.
9.
P Dell'Antone 《Archives of biochemistry and biophysics》1988,262(1):314-325
ATPase activity in highly purified rat liver lysosome preparations was evaluated in the presence of other membrane cellular ATPase inhibitors, and compared with lysosome ATP-driven proton translocating activity. Replacement of 5 mM Mg2+ with equimolar Ca2+ brought about a 50% inhibition in divalent cation-dependent ATPase activity, and an 80% inactivation of ATP-linked lysosomal H+ pump activity. In the presence of optimal concentrations of Ca2+ and Mg2+, ATPase activity was similar to that seen in an Mg2+ medium. Mg2+-dependent ATPase activity was greatly inhibited (from 70 to 80%) by the platinum complexes; cis-didimethylsulfoxide dichloroplatinum(II) (CDDP) at approximately 90 microM and cis-diaminedichloroplatinum(II) at twofold higher concentrations. Less inhibition, about 30 and 45%, was obtained with N,N'-dicyclohexylcarbodiimide and N-ethylmaleimide, and the maximal effect occurred in the 50-100 microM and 0.1-1.5 mM ranges, respectively. The concentration dependence of inhibition by the above drugs was determined for both proton pumping and ATPase activities, and half-maximal inhibition concentration of each activity was found at nearly similar values. A micromolar concentration of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) prevented ATP from setting up a pH gradient across the lysosomal membranes, but stimulated Mg2+-ATPase activity significantly. ATPase activity in Ca2+ medium was also inhibited by CDDP and stimulated by FCCP, but both effects were two- to threefold less than those observed in Mg2+ medium. FCCP failed to stimulate ATPase activity in a CDDP-supplemented medium, thus suggesting that the same ATPase activity fraction was sensitive to both CDDP and FCCP. Mg2+-ATPase activity, like the proton pump, was anion dependent. The lowest activity was recorded in a F-medium, and increased in the order of F- less than SO2-4 less than Cl- approximately equal to Br-. The CDDP-sensitive ATPase activity observed, supported by Mg2+ and less so by Ca2+, may be related to lysosome proton pump activity. 相似文献
10.
T R Hinds F F Vincenzi 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1986,181(4):542-549
Previous work in several laboratories revealed little or no Ca2+ pump ATPase activity and little or no activation of the ATPase by calmodulin (CaM) in membranes isolated from dog red blood cells (RBCs). In the present work, intact RBCs from dogs were exposed to the ionophore, A23187, in the presence of Ca2+. A rapid, apparently first order, loss of ATP occurred under these conditions. The first order rate constant was 0.0944 min-1, or approximately 47% of that found in human RBCs under the same conditions. The anti-CaM drug, trifluoperazine, inhibited the loss of ATP and the Ca2+ activation curve of ATP loss in intact cells resembled that observed for CaM-activated Ca2+ pump ATPase in isolated human membranes. Taken together, these data are consistent with the interpretation that the dog RBC membrane contains a CaM-activated Ca2+ pump ATPase. 相似文献
11.
Kubota T Tokuno K Nakagawa J Kitamura Y Ogawa H Suzuki Y Suzuki K Oka K 《Biochemical and biophysical research communications》2003,303(1):332-336
Mg(2+) buffering mechanisms in PC12 cells were demonstrated with particular focus on the role of the Na(+)/Mg(2+) transporter by using a newly developed Mg(2+) indicator, KMG-20, and also a Na(+) indicator, Sodium Green. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), a protonophore, induced a transient increase in the intracellular Mg(2+) concentration ([Mg(2+)](i)). The rate of decrease of [Mg(2+)](i) was slower in a Na(+)-free extracellular medium, suggesting the coupling of Na(+) influx and Mg(2+) efflux. Na(+) influxes were different for normal and imipramine- (a putative inhibitor of the Na(+)/Mg(2+) transporter) containing solutions. FCCP induced a rapid increase in [Na(+)](i) in the normal solution, while the increase was gradual in the imipramine-containing solution. The rate of decrease of [Mg(2+)](i) in the imipramine-containing solution was also slower than that in the normal solution. From these results, we show that the main buffering mechanism for excess Mg(2+) depends on the Na(+)/Mg(2+) transporter in PC12 cells. 相似文献
12.
13.
Experiments from other laboratories conducted with Leishmania donovani promastigote cells had earlier indicated that the plasma membrane Mg2+-ATPase of the parasite is an extrusion pump for H+. Taking advantage of the pellicular microtubular structure of the plasma membrane of the organism, we report procedures for obtaining sealed ghost and sealed everted vesicle of defined polarity. Rapid influx of H+ into everted vesicles was found to be dependent on the simultaneous presence of ATP (1 mm) and Mg2+ (1 mm). Excellent correspondence between rate of H+ entry and the enzyme activity clearly demonstrated the Mg2+-ATPase to be a true H+ pump. H+ entry into everted vesicle was strongly inhibited by SCH28080 (IC50 = approximately 40 microm) and by omeprazole (IC50 = approximately 50 microm), both of which are characteristic inhibitors of mammalian gastric H+,K+-ATPase. H+ influx was completely insensitive to ouabain (250 microm), the typical inhibitor of Na+,K+-ATPase. Mg2+-ATPase activity could be partially stimulated with K+ (20 mm) that was inhibitable (>85%) with SCH28080 (50 microm). ATP-dependent rapid efflux of 86Rb+ from preloaded vesicles was completely inhibited by preincubation with omeprazole (150 microm) and by 5,5'-dithiobis-(2-nitrobenzoic acid) (1 mm), an inhibitor of the enzyme. Assuming Rb+ to be a true surrogate for K+, an ATP-dependent, electroneutral stoichiometric exchange of H+ and K+(1:1) was established. Rapid and 10-fold active accumulation of [U-(14)C]2-deoxyglucose in sealed ghosts could be observed when an artificial pH gradient (interior alkaline) was imposed. Rapid efflux of [U-(14)C]d-glucose from preloaded everted vesicles could also be initiated by activating the enzyme, with ATP. Taken together, the plasma membrane Mg2+-ATPase has been identified as an electroneutral H+/K+ antiporter with some properties reminiscent of the gastric H+,K+-ATPase. This enzyme is possibly involved in active accumulation of glucose via a H+-glucose symport system and in K+ accumulation. 相似文献
14.
(1) The Mg2+-ATPase of purified human granulocytes is located at the plasma membrane. Thus, no additional enzyme activity was detected when the cells were disrupted. Moreover, the Mg2+-ATPase activity of intact cells was inhibited by such poorly permeant reagents as diazotized sulfanilic acid and suramin. Finally, the enzyme activity of cell homogenates was recovered in particulate fractions. (2)The surface Mg2+-ATPase of human granulocytes had an apparent Km of 50 microns for ATP and displayed substrate inhibition. (3) The enzyme was not affected by ouabain, but was inhibited by N-ethyl malemide, sodium meta-periodate, suramin and diazotized sulfanilic acid. The enzyme was activated by cytochalasins B and D and by UDP. Activation by UDP was characterized by changes in the enzyme's apparent Km and V and by belief of substrate inhibition. (4)Internalization of surface membranes subsequent to phagocytosis of suitable particles did not result in depletion of Mg2+-ATPase from the cell surface. The enzyme activity did not decrease after exposure to several varieties of paraffin oil emulsion particles, even if the challenged cells had been pretreated with colchicine of cytochalasin B. (5) Since suramin, which inhibited Mg2+-ATPase, had no effect upon other granulocyte functions such as chemotaxis, superoxide anion generation, or phagocytosis, it is unlikely that the enzyme plays a major role in these functions. 相似文献
15.
16.
17.
The Mg2+ATPase activity of liver plasma membranes decreases markedly with increasing temperature above 30 degrees. This negative temperature dependency is counteracted by the binding of wheat germ agglutinin, concanavalin A, or Ricinus communis agglutinin (at concentrations greater than or equal 0.5 mg/ml) to membranes prior to assay of the enzyme. With one of these lectins bound, the enzyme has a single energy of activation between 20 degrees and 45 degrees. The binding of dimeric succinyl concanavalin A, soybean agglutinin, fucose-binding lectin from Lotus tetragonolobus, or the leucoagglutinin from Phaseolus vulgaris does not alter the temperature dependency of the enzyme. The latter two lectins, however, do prevent the concanavalin A-induced activation of the enzyme at 37 degrees. At saturating substrate concentrations, the enzyme is not inhibited by any of the lectins tested over a wide range of concentrations. Cytochalasin B and colchicine separately or in combination have little influence on the lectin-induced enhancement of enzyme activity. Chlorpromazine and vinblastine sulfate each partially prevent the activation and in combination do so completely. Treatment of the membranes with the detergent Lubrol-PX or phospholipase A prevents activation of the enzyme by concanavalin A. The results are consistent with a restriction by the lectin of an environment which is normally too disordered for maximal enzyme activity above 30 degrees. 相似文献
18.
C O Bewaji O O Olorunsogo E A Bababunmi 《Comparative biochemistry and physiology. B, Comparative biochemistry》1985,82(1):117-122
The properties of the membrane-bound calcium-pumping protein, the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) were compared in erythrocyte ghosts isolated from five mammalian species--human (Homo sapiens), bovine (Bos taurus), porcine (Sus scrofa melitensis), ovine (Ovis aries crassicandus) and caprine (Capra hircus syriaca). The specific activity of the enzyme in porcine erythrocytes is one order of magnitude higher than in the other species. It was also stimulated to various extents by the regulator protein, calmodulin, and by phosphatidylinositol in all the species. Analysis of membrane proteins revealed a number of differences which seem to suggest that the molecular architecture of the red cell membrane influences the activity of the enzyme. 相似文献
19.
20.
K Aoyagi K Takeshige H Sumimoto H Nunoi S Minakami 《Biochemical and biophysical research communications》1992,186(1):391-397
The membrane fraction and three cytosolic proteins of neutrophils, p47-phox, p67-phox and a G-protein, are involved in the cell-free activation of the O2(-)-generating NADPH oxidase in the presence of SDS, though it has been controversial whether the G-protein is required or just enhancing the activity. We have used the three cytosolic factors, the solubilized membrane fraction, GTP gamma S and SDS, and found that both G-protein and GTP gamma S are essential for the activation of the NADPH oxidase. The effect of GTP gamma S is modified by Mg2+: the cations enhance the O2- generation at low concentrations of GTP gamma S, whereas they attenuate the activity at higher concentrations of GTP gamma S. In presence of 10 microM GTP gamma S, the maximal activity is observed at 0.1 microM Mg2+, which is several-fold higher than that at 1 mM Mg2+. The omission of Mg2+ followed by the chelation with EDTA results in loss of the activation, which is completely restored by the addition of Mg2+. Thus, Mg2+ seems to modulate the activation of the NADPH oxidase at the level of the G-protein. 相似文献