首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Polycomb group genes are required for the correct expression of the homeotic complex genes and segment specification during Drosophila embryogenesis and larval development. In mouse, inactivation studies of several Polycomb group genes indicate that they are also involved in Hox gene regulation. We have used our previously generated M33 mutants to study the function of M33, the mouse homologue of the Polycomb gene of Drosophila. In this paper, we show that in the absence of M33, the window of Hoxd4 retinoic acid (RA) responsiveness is opened earlier and that Hoxd11 gene expression is activated earlier in development This indicates that M33 antagonizes the RA pathway and has a function in the establishment of the early temporal sequence of activation of Hox genes. Despite the early activation, A-P boundaries are correct in later stages, indicating a separate control mechanism for early aspects of Hox regulation. This raises a number of interesting issues with respect to the roles of both Pc-G proteins and Hox regulatory mechanisms. We propose that a function of the M33 protein is to control the accessibility of retinoic acid response elements in the vicinity of Hox genes regulatory regions by direct or indirect mechanisms or both. This could provide a means for preventing ectopic transactivation early in development and be part of the molecular basis for temporal colinearity of Hox gene expression.  相似文献   

3.
4.
Mesenchymal patterning is an active process whereby genetic commands coordinate cell adhesion, sorting and condensation, and thereby direct the formation of morphological structures. In mice that lack the Hoxa13 gene, the mesenchymal condensations that form the autopod skeletal elements are poorly resolved, resulting in missing digit, carpal and tarsal elements. In addition, mesenchymal and endothelial cell layers of the umbilical arteries (UAs) are disorganized, resulting in their stenosis and in embryonic death. To further investigate the role of Hoxa13 in these phenotypes, we generated a loss-of-function allele in which the GFP gene was targeted into the Hoxa13 locus. This allele allowed FACS isolation of mesenchymal cells from Hoxa13 heterozygous and mutant homozygous limb buds. Hoxa13(GFP) expressing mesenchymal cells from Hoxa13 mutant homozygous embryos are defective in forming chondrogenic condensations in vitro. Analysis of pro-adhesion molecules in the autopod of Hoxa13 mutants revealed a marked reduction in EphA7 expression in affected digits, as well as in micromass cell cultures prepared from mutant mesenchymal cells. Finally, antibody blocking of the EphA7 extracellular domain severely inhibits the capacity of Hoxa13(GFP) heterozygous cells to condense and form chondrogenic nodules in vitro, which is consistent with the hypothesis that reduction in EphA7 expression affects the capacity of Hoxa13(-/-) mesenchymal cells to form chondrogenic condensations in vivo and in vitro. EphA7 and EphA4 expression were also decreased in the mesenchymal and endothelial cells that form the umbilical arteries in Hoxa13 mutant homozygous embryos. These results suggest that an important role for Hoxa13 during limb and UA development is to regulate genes whose products are required for mesenchymal cell adhesion, sorting and boundary formation.  相似文献   

5.
Characterization of GDF-10 expression patterns and null mice.   总被引:4,自引:0,他引:4  
Growth/differentiation factor-10 (GDF-10) is a TGF-beta family member highly related to bone morphogenetic protein-3. In order to determine the biological function of GDF-10, we carried out a detailed analysis of the expression pattern of GDF-10 and characterized GDF-10-null mice that we generated by gene targeting. During embryogenesis GDF-10 is expressed prominently in developing skeletal structures both in the craniofacial region and in the vertebral column. In adult animals, GDF-10 is expressed at high levels in the brain, where GDF-10 is localized primarily to cells in the Purkinje cell layer of the cerebellum, and in the uterus, where the expression levels of GDF-10 are regulated both during the menstrual cycle and during pregnancy. Despite the high levels of GDF-10 expression in these tissues, we found no obvious abnormalities in GDF-10-knockout mice with respect to the development of these tissues. These findings suggest either that GDF-10 plays no regulatory role in these tissues or that its function is redundant with that of other growth factor-like molecules.  相似文献   

6.
Parkin mutations produce Parkinson’s disease (PD) in humans and nigrostriatal dopamine lesions related to increased free radicals in mice. We examined the effects of NP7, a synthetic, marine derived, free radical scavenger which enters the brain, on H2O2 toxicity in cultured neurons and glia from wild-type (WT) and parkin null mice (PK-KO).NP7, 5-10 μM, prevented the H2O2 induced apoptosis and necrosis of midbrain neuronal and glial cultures from WT and PK-KO mice. NP7 suppressed microglial activation and the H2O2 induced drop-out of dopamine neurons. Furthermore, NP7 prevented the increased phosphorylation of ERK and AKT induced by H2O2. NP7 may be a promising neuroprotector against oxidative stress in PD.  相似文献   

7.
Clonal deletion is the major mechanism by which T cell tolerance is achieved in vivo. The process of activation-driven cell death, originally characterized with T cell hybridomas, likely represents the mechanism of clonal deletion because it shares a number of properties with the in vivo process, especially the ability to be triggered in an Ag-specific manner, the cell-autonomous nature of the response, and its sensitivity to the drug cyclosporin A. We now have extended our analysis of activation-driven cell death to clonal populations of nontransformed T cells. Activation-driven cell death can be induced in nontransformed T lymphocytes by combinations of mitogenic stimuli. In particular, two mitogenic stimuli at high dose, one a lymphokine and the other delivered via the TCR or another activation structure, are required to induce activation-driven cell death. Activation-driven cell death is an active cell suicide process with attributes typical of physiological cell death, including early nuclear disintegration and a requirement for macromolecular synthesis, and is distinct from death by factor deprivation. Susceptibility to the induction of cell death by antigenic or activating stimulation is a common aspect of most T cells and is consistent with observations that clonal deletion can occur throughout T cell ontogeny. Most importantly, the alternative cellular responses of cell death and cell proliferation in nontransformed T cells appear to be triggered solely as a function of quantitative differences in the doses of identical stimuli. This can be viewed as a dose-dependent switch that determines cell fate. Developmental regulation of this switch may explain the processes of positive and negative selection during T cell ontogeny and also provide a mechanistic rationale for a strategy of selective anti-tumor therapy.  相似文献   

8.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

9.

Background

Hormone-sensitive lipase (HSL) is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored lipids, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. The aim of this study was to define lipid profiles in plasma, white adipose tissue (WAT) and liver of HSL null mice, in order to better understand the role of this multifunctional enzyme.

Methodology/Principal Findings

This study used global and targeted lipidomics and expression profiling to reveal changed lipid profiles in WAT, liver and plasma as well as altered expression of desaturases and elongases in WAT and liver of HSL null mice on high fat diet. Decreased mRNA levels of stearoyl-CoA desaturase 1 and 2 in WAT were consistent with a lowered ratio of 16∶1n7/16∶0 and 18∶1n9/18∶0 in WAT and plasma. In WAT, increased ratio of 18∶0/16∶0 could be linked to elevated mRNA levels of the Elovl1 elongase.

Conclusions

This study illustrates the importance of HSL for normal lipid metabolism in response to a high fat diet. HSL deficiency greatly influences the expression of elongases and desaturases, resulting in altered lipid profiles in WAT, liver and plasma. Finally, altered proportions of palmitoleate, a recently-suggested lipokine, in tissue and plasma of HSL null mice, could be an important factor mediating and contributing to the changed lipid profile, and possibly also to the decreased insulin sensitivity seen in HSL null mice.  相似文献   

10.
11.
Increasing evidence indicates that the Hoxa11 gene plays a critical role in the proper development of the uterus. In this report, we describe potential altered cellular processes in the developing uterus of Hoxa11 mutants. Histologic analysis demonstrates normal uterine morphology in Hoxa11 mutants as compared with controls at the newborn stage and d 7 after birth. Stromal tissue was moderately reduced in the Hoxa11 mutant uterus by d 14 after birth and was absent by d 21 after birth. There is decreased cellular proliferation in the Hoxa11 mutant uterus both at 7 and 14 d after birth. Terminal deoxyribonucleotide transferase-mediated deoxyuridine triphosphate nick-end labeling analysis demonstrates that apoptosis was markedly increased in the Hoxa11 mutant uterus at d 14 after birth. p27 is decreased in the Hoxa11 mutant as evidenced by real-time PCR. Epidermal growth factor receptor expression is dramatically decreased as evidenced by both real-time PCR and immunohistochemistry results. These findings suggest that Hoxa11 is required for proper cellular proliferation and apoptotic responses in the developing neonatal uterus and that the regulation of epidermal growth factor receptor is critical to these processes.  相似文献   

12.
In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E(2) and LTB(4) production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response.  相似文献   

13.
Mice deficient in the neural cell adhesion molecule (NCAM) show behavioral abnormalities as adults, including altered exploratory behavior, deficits in spatial learning, and increased intermale aggression. Here, we report increased anxiety-like behavior of homozygous (NCAM-/-) and heterozygous (NCAM/-) mutant mice in a light/dark avoidance test, independent of genetic background and gender. Anxiety-like behavior was reduced in both NCAM+/+ and NCAM-/- mice by systemic administration of the benzodiazepine agonist diazepam and the 5-HT1A receptor agonists buspirone and 8-OH-DPAT. However, NCAM-/- mice showed anxiolytic-like effects at lower doses of buspirone and 8-OH-DPAT than NCAM+/+ mice. Such increased response to 5-HT1A receptor stimulation suggests a functional change in the serotonergic system of NCAM-/- mice, likely involved in the control of anxiety and aggression. However, 5-HT1A receptor binding and tissue content of serotonin and its metabolite 5-hydroxyindolacetic acid were found unaltered in every brain area of NCAM-/- mice investigated, indicating that expression of 5-HT1A receptors as well as synthesis and release of serotonin are largely unchanged in NCAM-/- mice. We hypothesize a critical involvement of endogenous NCAM in serotonergic transmission via 5-HT1A receptors and inwardly rectifying K+ channels as the respective effector systems.  相似文献   

14.
The massive T cell death that occurs in HIV type 1 (HIV-1) infection contributes profoundly to the pathophysiology associated with AIDS. The mechanisms controlling cell death of both infected and uninfected T cells ("bystander" death) are not completely understood. We have shown that HIV-1 infection of T cells results in altered glycosylation of cell surface glycoproteins; specifically, it decreased sialylation and increased expression of core 2 O-glycans. Galectin-1 is an endogenous human lectin that recognizes these types of glycosylation changes and induces cell death of activated lymphocytes. Therefore we studied the possible contribution of galectin-1 in the pathophysiology of AIDS. O-glycan modifications were investigated on peripheral lymphocytes from AIDS patients. Oligosaccharides from CD43 and CD45 of CEM cells latently infected with HIV-1 were chemically analyzed. Consistent with our previous results, we show that HIV-1 infection results in accumulation of exposed lactosamine residues, oligosaccharides recognized by galectin-1 on cell surface glycoproteins. Both latently HIV-1-infected T cell lines and peripheral CD4 and CD8 T cells from AIDS patients exhibited exposed lactosamine residues and demonstrated marked susceptibility to galectin-1-induced cell death, in contrast to control cultures or cells from uninfected donors. The fraction of cells that died in response to galectin-1 exceeded the fraction of infected cells, indicating that death of uninfected cells occurred. Altered cell surface glycosylation of T cells during HIV-1 infection increases the susceptibility to galectin-1-induced cell death, and this death pathway can contribute to loss of both infected and uninfected T cells in AIDS.  相似文献   

15.
Parkinson's disease is a neurodegenerative disorder which is in most cases of unknown etiology. Mutations of the Park-2 gene are the most frequent cause of familial parkinsonism and parkin knockout (PK-KO) mice have abnormalities that resemble the clinical syndrome. We investigated the interaction of genetic and environmental factors, treating midbrain neuronal cultures from PK-KO and wild-type (WT) mice with rotenone (ROT). ROT (0.025-0.1 microm) produced a dose-dependent selective reduction of tyrosine hydroxylase-immunoreactive cells and of other neurons, as shown by the immunoreactivity to microtubule-associated protein 2 in PK-KO cultures, suggesting that the toxic effect of ROT involved dopamine and other types of neurons. Neuronal death was mainly apoptotic and suppressible by the caspase inhibitor t-butoxycarbonyl-Asp(OMe)-fluoromethyl ketone (Boc-D-FMK). PK-KO cultures were more susceptible to apoptosis induced by low doses of ROT than those from WT. ROT increased the proportion of astroglia and microglia more in PK-KO than in WT cultures. Indomethacin, a cyclo-oxygenase inhibitor, worsened the effects of ROT on tyrosine hydroxylase cells, apoptosis and astroglial (glial fibrillary acidic protein) cells. N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase, increased ROT-induced apoptosis but did not change tyrosine hydroxylase-immunoreactive or glial fibrillary acidic protein area. Neither indomethacin nor N-nitro-L-arginine methyl ester had any effect on the reduction by ROT of the mitochondrial potential as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Microglial NADPH oxidase inhibition, however, protected against ROT. The roles of p38 MAPK and extracellular signal-regulated kinase signaling pathways were tested by treatment with SB20358 and PD98059, respectively. These compounds were inactive in ROT-naive cultures but PD98059 slightly increased cellular necrosis, as measured by lactate dehydrogenase levels, caused by ROT, without changing mitochondrial activity. SB20358 increased the mitochondrial failure and lactate dehydrogenase elevation induced by ROT. Minocycline, an inhibitor of microglia, prevented the dropout of tyrosine hydroxylase and apoptosis by ROT; the addition of microglia from PK-KO to WT neuronal cultures increased the sensitivity of dopaminergic neurons to ROT. PK-KO mice were more susceptible than WT to ROT and the combined effects of Park-2 suppression and ROT reproduced the cellular events observed in Parkinson's disease. These events were prevented by minocycline.  相似文献   

16.
17.
The digestive tract of vertebrates is a complex organ system required for the digestion of food and the absorption of nutrients. The colon evolved as a water absorption organ essential for vertebrates to survive on land. In contrast to land vertebrates, the Chondrichthyes (sharks, skates and rays) are nearly iso-osmotic with their ocean environment and do not reabsorb water from food waste. To understand the origin of the vertebrate colon, we examined the distribution of sulfated and sialyated mucus-producing cells in the little skate, Raja erinacea, as an indication of water absorption function in the chondrichthian digestive tract. The percentage of acid mucin producing goblet cells was analyzed in the spiral valve and hindgut of little skate and the small intestine and colon of mouse embryos. Levels of acid mucins in the hindgut of the little skate was comparable to that of the small intestines of terrestrial vertebrates, whereas the distal region of the spiral valve contained high levels of acid mucin producing cells similar to the colon of mouse and chick. The low numbers of acid mucins in the little skate hindgut confirms that a functional colon for water absorption is absent in the Chondrichthyes. Interestingly, the presence of high levels of acid mucins in the posterior spiral valve provides evidence for a possible primordial water-absorbing organ in the elasmobranchs. Hoxd13 patterns acid mucins in the colons of terrestrial vertebrates. Expression of Hoxd13 and Hoxa13 in R. erinacea suggests conserved roles for Hox genes in patterning the early hindgut.  相似文献   

18.
Loss of Bmp7 and Fgf8 signaling in Hoxa13-mutant mice causes hypospadia   总被引:8,自引:0,他引:8  
In humans and mice, mutations in Hoxa13 cause malformation of limb and genitourinary (GU) regions. In males, one of the most common GU malformations associated with loss of Hoxa13 function is hypospadia, a condition defined by the poor growth and closure of the urethra and glans penis. By examining early signaling in the developing mouse genital tubercle, we show that Hoxa13 is essential for normal expression of Fgf8 and Bmp7 in the urethral plate epithelium. In Hoxa13(GFP)-mutant mice, hypospadias occur as a result of the combined loss of Fgf8 and Bmp7 expression in the urethral plate epithelium, as well as the ectopic expression of noggin (Nog) in the flanking mesenchyme. In vitro supplementation with Fgf8 restored proliferation in homozygous mutants to wild-type levels, suggesting that Fgf8 is sufficient to direct early proliferation of the developing genital tubercle. However, the closure defects of the distal urethra and glans can be attributed to a loss of apoptosis in the urethra, which is consistent with reduced Bmp7 expression in this region. Mice mutant for Hoxa13 also exhibit changes in androgen receptor expression, providing a developmental link between Hoxa13-associated hypospadias and those produced by antagonists to androgen signaling. Finally, a novel role for Hoxa13 in the vascularization of the glans penis is also identified.  相似文献   

19.
Hox genes pattern the fates of the ventral ectodermal Pn.p cells that lie along the anteroposterior (A/P) body axis of C. elegans. In these cells, the Hox genes are expressed in sequential overlapping domains where they control the ability of each Pn.p cell to fuse with the surrounding syncytial epidermis. The activities of Hox proteins are sex-specific in this tissue, resulting in sex-specific patterns of cell fusion: in hermaphrodites, the mid-body cells remain unfused, whereas in males, alternating domains of syncytial and unfused cells develop. We have found that the gene egl-27, which encodes a C. elegans homologue of a chromatin regulatory factor, specifies these patterns by regulating both Hox gene expression and Hox protein function. In egl-27 mutants, the expression domains of Hox genes in these cells are shifted posteriorly, suggesting that egl-27 influences A/P positional information. In addition, egl-27 controls Hox protein function in the Pn.p cells in two ways: in hermaphrodites it inhibits MAB-5 activity, whereas in males it permits a combinatorial interaction between LIN-39 and MAB-5. Thus, by selectively modifying the activities of Hox proteins, egl-27 elaborates a simple Hox expression pattern into complex patterns of cell fates. Taken together, these results implicate egl-27 in the diversification of cell fates along the A/P axis and suggest that chromatin reorganization is necessary for controlling Hox gene expression and Hox protein function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号