首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ants L. semenovi has been found to belong to species with endogenous-heterodynamic seasonal life cycles with the obligate diapause induced predominantly by factors internal for a colony, whereas external ecological factors (photoperiods and temperature) produce merely modifying effects by accelerating or delaying the diapause onset. The photoperiodic and temperature regulation of diapause induction in larvae and queens is shown. Under effect of short days and low temperature the periods of larval pupation and queen oviposition in a colony are shortened markedly, i.e., the diapause of larvae and queens occurs earlier. The daily rhythms of temperature 15/25°C and particularly 20/30°C as compared with constant temperatures 20 and 25°C that correspond to the mean circadian temperatures of the thermorhythm, inhibit manifestations of the short day effects by stimulating the non-diapause development and increasing duration of the seasonal development cycle of ant colonies. The L. semenovi photoperiodic reaction is quantitative, as development and pupation of larvae and egg-laying of queens cease sooner or later under both the short and the long days, but in the latter case significantly later. Thus L. semenovi is one more example among very rare ant species that are revealed to have the photoperiodic regulation of the colony development seasonal cycle.  相似文献   

2.
Some basic properties of the adult locomotor activity rhythm and of the maternal induction of larval diapause in Calliphora vicina are described. Diapause responses in Nanda-Hamner experiments indicate that circadian rhythmicity is involved in photoperiodic time measurement (PPTM). However, although the locomotor rhythm shows long-lasting changes in free-running period (aftereffects of photoperiod and constant light) and occasional "splitting," thereby indicating a structural complexity to the circadian system, the overt rhythm may be used as an indicator of phase relationships (or "hands") of the covert system involved in PPTM, within the framework of a simple external-coincidence model for the diapause clock. Thus, in light-dark (LD) cycles close to "resonance" with the circadian pacemaker(s) (T 24, LD 12:12; T 48, LD 12:36; and T 72, LD 12:60), light is restricted to the subjective day and diapause incidence is high. In T 36 (LD 12:24) and T 60 (LD 12:48), light falls into the subjective night and illuminates the postulated light-sensitive phase (phi i), and diapause incidence is low. Within the primary range of entrainment, light invades the late subjective night in T 20 (LD 12:8), illuminates phi i, and causes low incidence of diapause; however, it invades the early subjective night in T 30 (LD 12:18) and diapause remains high.  相似文献   

3.
Although maternal photoperiodic and maternal thermal effects on the progeny diapause have been demonstrated in a number of insect species, their interaction has been rarely studied. We investigated this interaction in Trichogramma telengai. In a series of experiments, maternal females were reared at day lengths of 12–18 h and at temperatures of 17, 20, 25 and 30°C. Their progeny developed under day length of 12 h and temperatures of 13, 14 and 15°C. The experiments showed that both short day and low temperature experienced by the maternal generation significantly increased the proportion of diapausing progeny. In particular, the threshold of the maternal photoperiodic response decreased with temperature. Under combinations of photoperiod with daily thermoperiod, the role of the “night” temperature in the induction of diapause in the progeny was much more important than that of the “day” temperature. We conclude that the interaction pattern between the photoperiodic and thermal maternal effects in T. telengai is generally the same as that between the photoperiodic and thermal responses directly influencing diapause induction in other long‐day insects. The threshold temperature of the maternal thermal response of T. telengai was about 25–27°C, while diapause can be induced if larvae develop at temperatures not higher than 15–16°C. This suggests that, at least in the studied Trichogramma species, the maternal thermal effect has no ecological value. In the practice of biocontrol, however, rearing of Trichogramma wasps at high temperature can drastically reduce the proportion of diapausing progeny.  相似文献   

4.
The Asian corn borer Ostrinia furnacalis (Guenée) enters facultative diapause as fully‐developed larvae in response to short‐day conditions. As a consequence of geographical variation in photoperiodic response, moths from Nanchang (28°46′N, 115°50′E) enter diapause in response to short day‐lengths (D strain), even at the high temperatures whereas moths from Ledong (18°47′N, 108°89′E) exhibit almost no diapause under the same conditions (N strain). In the present study, crosses between the two strains are used to evaluate the inheritance of diapause under different photoperiods at temperatures of 22, 25 and 28 °C. The moths, both reciprocal crosses and backcrosses, show a clear long‐day response, similar to that of the D strain, suggesting that the photoperiodic response controlling diapause in this moth is heritable. However, the critical day‐length for induction of diapause is shorter in hybrids than in the D strain. The N strain also shows a short‐day photoperiodic response at the lower temperature of 22 °C, indicating that the N strain still has the capacity to enter a photoperiodically‐induced diapause, depending on the rearing temperature. The incidence of diapause in all crosses is highest with D strain fathers or grandfathers and lowest with N strain fathers or grandfathers, indicating that the male parent has significantly more influence on the incidence of diapause of subsequent progeny than the female. The results obtained from all crosses under LD 12 : 12 h or LD 13 : 11 h photocycles at 25 °C show that inheritance of diapause in O. furnacalis does not fit an additive hypothesis and that the capacity for diapause is transmitted genetically in the manner of incomplete dominance.  相似文献   

5.
Adults of the cabbage beetle Colaphellus bowringi display a summer diapause in response to the exposure of their larvae to long photoperiods. In the present study, the inheritance of the photoperiodic response controlling summer diapause in C. bowringi by crossing a high diapause strain (D strain) with a laboratory selected nondiapause strain (N strain) was investigated under different photoperiods at 22, 25 and 28 °C. The beetles in both reciprocal crosses and backcrosses showed a clear short-day response for the induction of diapause at all temperatures, similar to that of the D strain, suggesting that photoperiodic response of this beetle is heritable. The diapause incidences in the progeny from all the crosses under LD 15:9 or LD 12:12 at 25 °C suggest that genetic and genetic-environmental interactions are involved in diapause induction. The incidence of diapauses in F1 progeny was significantly lower than that in the D × D strain but significantly higher than that in the N × N strain, indicating that the diapause capability is inherited in an incomplete dominant manner. The incidence of diapause was greater among the offspring of hybrid females when those females had a D strain mother or grandmother rather than a N strain mother or grandmother, indicating that maternal effects on diapause induction are stronger than paternal effects. The laboratory selected nondiapause strain also showed a short-day photoperiodic response at a low temperature of 22 °C, indicating that the photoperiodic photoreceptor and photoperiodic clock still function in the nondiapause strain.  相似文献   

6.
Abstract The Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) diapauses as a last‐instar (fifth) larva. At 30 °C, no larvae enter diapause under any photoperiodic conditions; at 25 °C, the photoperiodic response curve is a long‐day type with a critical length of approximately 13 h light; at 20 °C, diapause is induced moderately even under long days (> 13 h). Cumulative effects of short days or long days on diapause induction are determined by alternate, stepwise and gradually changing regimes of photoperiod at 25 °C. When the larvae are repeatedly exposed to LD 16 : 8 h and LD 12 : 12 h photoperiods every other day, the incidence of diapause is 37%. When the larvae are placed under an LD 16 : 8 h photoperiod for 2 days and then under an LD 12 : 12 h photoperiod for 1 day, it is 38 %. Exposure to an LD 16 : 8 h photoperiod for 1 day and then to an LD 12 : 12 h photoperiod for 2 days induces only 15% diapause. This may indicate that the photoperiodic information is not accumulated in a simple fashion despite the generally accepted hypothesis (i.e. photoperiodic counter). Larvae exposed to an LD 16 : 8 h photoperiod for 5 days after oviposition express a very high incidence of diapause even under short days between an LD 2 : 22 h and LD 12 : 12 h photoperiod. After 10 days exposure to an LD 16 : 8 h photoperiod, however, the short day does not induce diapause strongly. On the other hand, an LD 12 : 12 h photoperiod in the early larval life is highly effective in the induction of diapause. A gradual increase or decrease of photoperiod (2 min day?1) shows that the direction of photoperiodic change does not affect the diapause determination.  相似文献   

7.
The yellow peach moth, Conogethes punctiferalis (Guenée), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperature on larval diapause was examined under empirical laboratory conditions. Short‐day treatments caused larval diapause at 25°C, and the critical photoperiod was between 12 and 13 h (or 12 h 51 min) light per day. No sensitive instar was identified for diapause induction under alternated short‐ (L : D 11 : 13 h) and long‐day (L : D 14 : 10 h) treatments at different larval stages. However, accumulative treatment of three instars and 10 d under short‐day treatment was required for the induction of 50% larval diapause. All larvae entered diapause at 20°C, whereas less than 3% did so at 30°C, irrespective of the long‐ or short‐day treatment. Furthermore, under the short‐day treatment, more than 90% of larvae went into diapause with temperatures ≤ 25°C, but less than 17% did so at 28°C. In contrast, under the long‐day treatment, less than 19% of larvae went into diapause with temperatures ≥ 23°C. The forward shift (5°C) of critical temperature under the long‐day regime demonstrated the compensatory effect of temperature and photoperiod on diapause induction. In conclusion, C. punctiferalis had a temperature‐dependent type I photoperiodic diapause response; there was no sensitive instar for diapause determination, but the photoperiodic accumulation time countermeasures both of the short‐day cycles and the number of instars exposed, and the photoperiodic diapause response, was a temperature‐compensated phenomenon.  相似文献   

8.
Living in seasonally changing environments requires adaptation to seasonal cycles. Many insects use the change in day length as a reliable cue for upcoming winter and respond to shortened photoperiod through diapause. In this study, we report the clinal variation in photoperiodic diapause induction in populations of the parasitoid wasp Nasonia vitripennis collected along a latitudinal gradient in Europe. In this species, diapause occurs in the larval stage and is maternally induced. Adult Nasonia females were exposed to different photoperiodic cycles and lifetime production of diapausing offspring was scored. Females switched to the production of diapausing offspring after exposure to a threshold number of photoperiodic cycles. A latitudinal cline was found in the proportion of diapausing offspring, the switch point for diapause induction measured as the maternal age at which the female starts to produce diapausing larvae, and the critical photoperiod for diapause induction. Populations at northern latitudes show an earlier switch point, higher proportions of diapausing individuals and longer critical photoperiods. Since the photoperiodic response was measured under the same laboratory conditions, the observed differences between populations most likely reflect genetic differences in sensitivity to photoperiodic cues, resulting from local adaptation to environmental cycles. The observed variability in diapause response combined with the availability of genomic tools for N. vitripennis represent a good opportunity to further investigate the genetic basis of this adaptive trait.  相似文献   

9.
Some effects of thermoperiods on the photoperiodic determination of larval diapause in the European corn borer, Ostrinia nubilalis are reported. Thermoperiods and photoperiods were shown to interact to a highly significant degree in the induction of diapause. Diapause determination was found to be sensitive to the duration and temperature of the cryoscotophase of the thermophotoperiod; the thermophotophase characteristics exerted only minor influence. Cryoscotophase temperatures of 10°C or lower caused an unexpected increase in the apparent critical nightlength for diapause determination. A 0°C cryoscotophase effectively prevented the photoperiodic determination of diapause. Experimental investigation of the effects of 0°C cryoscotophases produced evidence that such low-temperature cryoscotophases may suppress the biological clock functions regulating the determination of diapause. Photoperiodic regimes in which 0°C pulses were inserted at successive points in 24-h cycle evoked responses suggesting that the early scotophase (saturation phase) was more strongly influenced by the low temperature pulse than was the later scotophase (scotonon); low temperature had little effect on the light-dependent processes (photonon) associated with the photophase.  相似文献   

10.
The photoperiodic clock in the flesh-fly, Sarcophaga argyrostoma   总被引:1,自引:0,他引:1  
Larval cultures of the flesh-fly, Sarcophaga argyrostoma, were raised in experimental light cycles with periods (T) of 21 to 72 hr, each cycle containing a photoperiod of 4 to 20 hr of white light. This ‘resonance’ technique revealed periodic maxima (~24 hr apart) of pupal diapause, thereby demonstrating an endogenous circadian component in the photoperiodic clock. The positions of these maxima of pupal diapause suggested that the oscillation, like that controlling the pupal eclosion rhythm in Drosophila pseudoobscura, is ‘damped out’ by photoperiods longer than about 11 to 12 hr, but restarts at dusk whereupon it runs with circadian periodicity in a protracted dark period. With photoperiods shorter than 12 hr, however, the two diapause maxima were less than 24 hr apart, suggesting that an additional component, possibly a ‘dawn hour-glass’, was modifying the position of the first peak.Both photoperiod and the period of the driving light cycle (T) were shown to affect the length of larval development (the sensitive period) and the number of calendar days needed to raise the incidence of pupal diapause to 50 per cent (the required day number, RDN). Peaks of diapause induction were shown to be the result of an interaction between a long sensitive period (slow development) and a low RDN, whereas troughs in diapause induction were the result of an interaction between a short sensitive period (fast development) and a higher RDN.Larvae of S. argyrostoma are unable to distinguish (in a photoperiodic sense) between 12 and 18 hr of red light (600 nm).  相似文献   

11.
大猿叶虫夏滞育的诱导:基于定量的光周期反应   总被引:1,自引:0,他引:1  
为了探明大猿叶虫Colaphellus bowringi Baly夏滞育诱导的光周期时间测量特性, 我们通过室内实验系统比较了该虫在25℃、 不同长光照条件下,夏滞育的发生以及诱导50%个体进入夏滞育所需求的光 暗循环数。结果表明:不同长光照诱导的夏滞育比率有显著差异, 其中15 h或16 h光照诱导的滞育比率最高, 短于或长于这两个光照其滞育率均明显下降。在不同光 暗循环实验中, 14 h诱导的滞育比率均低于50%, 诱导50%个体进入夏滞育所需求的光 暗循环数在L15∶D9, L16∶D8, L17∶ D7和L18∶D6分别为2.61, 3.72, 4.64和5.92 d, 处理间存在显著差异。这些结果提示该虫夏滞育的诱导是基于定量的光周期反应。  相似文献   

12.
In the cabbage butterfly, Pieris melete, summer and winter diapause are induced principally by long and short daylengths, respectively; the intermediate daylengths (12-13 h) permit pupae to develop without diapause. In this study, photoperiodic control of summer and winter diapause was systematically investigated in this butterfly by examining the photoperiodic response, the number of days required to induce 50% summer and winter diapause and the duration of diapausing pupae induced under different photoperiods. Photoperiodic response curves at 18 and 20 degrees C showed that all pupae entered winter diapause at short daylengths (8-11 h), the incidence of diapause dropped to 82.3-85.5% at 22 degrees C without showing a significant difference between short daylengths, whereas the incidence of summer diapause induced by different long daylengths (14-18 h) was varied and was obviously affected by temperature. By transferring from various short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) to an intermediate daylength (LD 12.5:11.5) at different times after hatching, the number of cycles required to induce 50% winter diapause (7.28 at LD 8:16, 7.16 at LD 9:15, 7.60 at LD 10:14 and 6.94 at LD 11:13) showed no significant difference, whereas by transferring from various long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) to an intermediate daylength (LD 12.5:11.5) at different times, the number of cycles required to induce 50% summer diapause (5.95 at LD 14:10, 8.02 at LD 15:9, 6.80 at LD 16:8, 7.64 at LD 17:7) were significantly different. The intensity of winter diapause induced under different short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) was not significantly different with an average diapause duration of 87 days at a constant temperature of 20 degrees C and 92 days at a mean daily temperature of 19.0 degrees C, whereas the intensity of summer diapause induced under different long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) was significantly different (the diapause duration ranged from 75 to 86 days at a constant temperature of 20 degrees C and from 76 to 88 days at a mean daily temperature of 19.0 degrees C). All results suggested that photoperiodic control of diapause induction and termination is significantly different between aestivation and hibernation.  相似文献   

13.
The introduced beetle Ophraella communa was first found in 1996 in Japan and has rapidly expanded its distribution to include regions that encompass a wide range of latitude and altitude and are dominated by different host‐plants. In this study, we investigated geographic variation in its photoperiodic response for the induction of reproductive diapause, with which the beetle adjusts its life cycle to local climate and host‐plant phenology. The beetle lines were collected from 18 sites in Japan. The diapause incidence under a photoperiodic condition of 13 h light : 11 h dark (LD 13:11) and the critical day length differed among the beetle lines. Analysis with the generalized linear model showed that latitude, altitude and host‐plant species (Ambrosia artemisiifolia vs. Ambrosia trifida) had significant effects on diapause incidence under LD 13:11. These results suggest that the O. communa populations have rapidly adapted to local environmental conditions after their colonization. However, the photoperiodic response of the O. communa population in Tomakomai, the northernmost part of its distribution range in Japan, deviated significantly from the general trend. We suggest that this deviation is attributed to either: (i) that this beetle has colonized Tomakomai more recently compared to the other sites; or (ii) that the Tomakomai population has adapted to local environments in a different way from other populations.  相似文献   

14.
Physiological characteristics of the photoreceptors involved in the photoperiodic induction of diapause were investigated in the flesh fly Sarcophaga similis. Both the early and late phases of scotophase were sensitive to light and a light pulse during each of these phases prevented diapause. Certain physiological differences between the phases were, nevertheless, detected. Compared with early scotophase, late scotophase required a light pulse with a long period and a large number of night interruption photoperiodic cycles in order to effectively prevent diapause. The diapause-averting effects of a light pulse during early scotophase were canceled by an additional long dark period, but those during late scotophase were not. Thus, the diapause-averting effects produced during early scotophase are different to those produced during late scotophase. The early scotophase was sensitive to light at wavelengths of 470 nm or shorter, but not to light of 583 nm or longer. In contrast, the late scotophase was sensitive to light of a broad range of wavelengths, ranging from 395 to 660 nm. Furthermore, the early scotophase was considerably more sensitive to monochromatic light with low photon flux density than the late scotophase. These results suggest that different types of photoreceptor are involved in the photoperiodic response.  相似文献   

15.
Reproductive diapause is a primary mechanism used by arthropods to synchronize their life cycle with seasonal changes in temperate regions. Our study species, Drosophila montana, represents the northern insect species where flies enter reproductive diapause under short day conditions and where the precise timing of diapause is crucial for both survival and offspring production. We have studied clinal variation in the critical day length for female diapause induction (CDL) and their overall susceptibility to enter diapause (diapause incidence), as well as the temperature sensitivity of these traits. The study was performed using multiple strains from four latitudinal clines of the species – short clines in Finland and Alaska and long clines in the Rocky Mountains and the western coast of North America – and from one population in Kamchatka, Russia. CDL showed strong latitudinal clines on both continents, decreasing by one hour per five degrees decline in latitude, on average. CDL also decreased in all populations along with an increase in fly rearing temperature postponing the diapause to later calendar time, the effects of temperature being stronger in southern than in northern population. Female diapause incidence was close to 100% under short day/low temperature conditions in all populations, but decreased below 50% even under short days in 19°C in the southern North American western coast populations and in 22°C in most populations. Comparing a diversity of climatic data for the studied populations showed that while CDL is under a tight photoperiodic regulation linked with latitude, its length depends also on climatic factors determining the growing season length. Overall, the study deepens our understanding of how spatial and environmental parameters affect the seasonal timing of an important biological event, reproductive diapause and helps to estimate the evolutionary potential of insect populations to survive in changing climatic conditions.  相似文献   

16.
It is assumed that a non-repetitive photoperiodic clock, or “hourglass”, could be circadian based, and described as an instantly damping circadian oscillator. A model for an instantly damping oscillator is developed in the present paper and tested on photoperiodic morph determination in the black bean aphid, Aphis fabae. The kinetics of the clock are presented in the form of phase resetting curves which plot the phase of the oscillation at lights-on against the phase at lights-off. Other components of the model, that is a “counter”, that accumulates and integrates photoperiodic information contained in a number of light-dark cycles up to a threshold value for induction to occur, and an influence of the circadian system on the induction process, are as previously described in the “hourglass timer-oscillator counter” model of photoperiodic induction of diapause in the spider mite, Tetranychus urticae. It is shown that night-length measurement in A. fabae can be described by means of an instantly damping oscillator: the phase resetting curves are based on a number of photoperiodic experiments and resemble the phase resetting curves determined for overt circadian rhythms in other insects. However, the results do not distinguish between a photoperiodic clock based on a damped circadian oscillator or a non-circadian hourglass mechanism.  相似文献   

17.
Seasonal changes in the photoperiodic sensitivity for reproduction in adults of a spring‐breeding carabid beetle, Carabus yaconinus (Coleoptera: Carabidae), were examined by transferring adults from outdoor to photoperiodic conditions in various seasons. Newly‐emerged adults transferred to the laboratory in September to December showed a long‐day photoperiodic response, but lost photoperiodic sensitivity gradually during winter. In late April, overwintered adults were not sensitive to the photoperiod, with females continuing to have mature eggs under both long‐day and short‐day conditions. In contrast, in late June and late July, the adults were sensitive to the photoperiod, with only those kept under short‐day conditions re‐entering reproductive diapause. This recovery of photoperiodic sensitivity appears to play a definitive role in maintenance of diapause in autumn for adults that have reproduced. The adults collected in late April regained photoperiodic sensitivity in two months even after being kept under unchanged conditions. Therefore, no environmental cue is required for recovery of photoperiodic sensitivity, which apparently recovers with the lapse of time. Our results suggest that the recurrent photoperiodic response is required in long‐living adults of C. yaconinus to regulate the timing of reproduction, and also indicate a difference in photoperiodic sensitivity in summer between overwintered and newly‐emerged adults.  相似文献   

18.
为了探讨黄杨绢野螟Diaphania perspectalis(Walker)越冬滞育特性,在自然条件与室内恒温下对黄杨绢野螟滞育诱导的光周期反应与光敏感龄期进行了研究。结果表明:该虫的光周期反应属于长光照反应型,短光照是引起黄杨绢野螟幼虫滞育的主要因子。幼虫的光周期反应对温度敏感,在恒温25℃和28℃条件下,诱导滞育的临界光周期分别为13h36min和12h50min。在日平均温度为26.7℃条件下,诱导滞育的临界光周期为13h40min。在恒温25℃条件下的滞育敏感虫龄试验表明,2~3龄幼虫即孵化后4~9d的幼虫对光周期反应最敏感。  相似文献   

19.
The mature larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae) enters facultative diapause in response to short‐day conditions in the autumn (August–September). Diapause induction and photoperiodic clock mechanism were investigated in C. suppressalis larvae reared on an artificial diet in the present study. The critical night length for diapause induction was about 9 h 53 min to 10 h 39 min at 22 to 28°C. The third‐instar larvae were found to be relatively sensitive to diapause induction. Photoperiodic response under non‐24‐h light–dark cycles showed that scotophase length played an essential role in the induction of larval diapause in C. suppressalis, and consecutive exposure to long‐night cycles was necessary for a high diapause incidence. In the Nanda–Hamner experiment, diapause incidence peaked at scotophase of 12 h and dropped rapidly at scotophases > 24 h. In the Bünsow experiment, diapause incidence was clearly suppressed, especially at the light pulse located 8 h in the scotophase. Both the Nanda–Hamner and Bünsow experiments showed no rhythmic fluctuations with a period of about 24 h; thus the photoperiodic clock in C. suppressalis is a non‐oscillatory hourglass timer or a rapidly damping circadian oscillator.  相似文献   

20.
Abstract .The blow fly Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae) has a wide distribution across northern and temperate Europe. It has a facultative, maternally-induced larval diapause in response to short days. The photoperiodic response, measured at 15 and 20°C, of two populations was compared. A southern population (originating at 51° N) was sensitive to temperature at all daylengths; the incidence of diapause was greatly reduced at 20°C compared with 15°C. The photoperiodic response of a northern population (from 65° N) was sensitive to temperature only in long days; in short days (< 14 h of light) the response of this strain was identical at each temperature.
Variation in parental photoperiod and temperature were found to affect the duration of larval diapause, indicating a role for maternal effects in diapause intensity as well as incidence. However, the between-strain variation was greater than that within strains, indicating qualitative differences in diapause response. These differences may arise from the ecological conditions at the points of origin of the two strains. The northern strain from the harsher climate has a more intense diapause that follows a relatively temperature-insensitive photoperiodic response. In contrast, the southern strain has a shallow diapause and its photoperiodic response may be overridden by the experience of concurrent high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号