首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesised that angiopoietin-1 (Ang-1), in conjunction with vascular endothelial growth factor (VEGF) gene therapy, can enhance arteriogenesis and angiogenesis during myocardial ischemia. Mice were given a single intramyocardial injection of saline, phVEGF-A(165) and phAng-1 or a combination thereof into the non-ischemic normal heart or into the ischemic border zone of the infarcted heart. In the normal and the ischemic myocardium, gene transfer of phVEGF-A(165) alone increased the myocardial capillary density by 16% and 36%, respectively, and phAng-1 had a similar effect. In the normal heart, the ratio of arteriolar to capillary densities increased with phVEGF-A(165) and more so in the ischemic myocardium where phAng-1 also had an effect. Furthermore, the combination of plasmids induced an up to 7.5-fold increase. Transient overexpression of VEGF-A(165) boosts endogenous arteriogenesis in addition to capillary angiogenesis. Ang-1 further boosts this effect at the arteriolar level.  相似文献   

2.
Therapeutic effects of combination of angiogenic growth factors for the treatment of ischemia after myocardial infarction are largely unknown. Plasmids expressing basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF-BB) or their combination with a 1:1 mass ratio were injected into hearts with 7-day-old myocardial infarction. Hearts were harvested after 1 and 4 weeks after gene transfer. The major findings in this chronic myocardial infarction model were that bFGF, PDGF-BB and their combination all had a more pronounced angiogenic effect on the arteriolar than the capillary level. bFGF stimulated both capillary and arteriolar growth while PDGF-BB preferentially stimulated arterioles. The combination increased the amount of both capillaries and arterioles and in addition gave rise to stable capillaries compared to single factor transfer but did not further enhance angiogenesis. No cardiovascular side effects were observed after gene transfer.  相似文献   

3.
Graft remodeling following anterior cruciate ligament (ACL) reconstruction requires a long period of recovery before it is capable of withstanding physiological loads. Graft revascularization is extremely important in the remodeling process. In ACL reconstruction, the local administration of vascular endothelial growth factor (VEGF) significantly increased revascularization of the graft, but did not significantly affect the mechanical properties of the graft after implantation (Ju et al., 2006; Yoshikawa, et al., 2006). Our previous studies showed that transforming growth factor-β1 (TGFβ1) could promote improvements in mechanical strength in Achilles tendon regeneration, by regulating collagen type I and type III synthesis, cross-link formation, and matrix-remodeling (Hou et al., 2009). The current study aims to investigate whether the co-expression of TGFβ1/VEGF165 could beneficially affect the remodeling of ACL grafts. Bone marrow-derived mesenchymal stem cells (BMSCs), transfected with an adenoviral vector encoding TGFβ1, VEGF165 or TGFβ1/VEGF165, were surgically implanted into experimental ACL grafts, with non-transfected cells as a control. HE and toluidine blue staining, vascular number, and biomechanical features were analyzed at 3, 6, 12, and 24 weeks after surgery. The results suggest that TGFβ1 expression, in the TGFβ1/VEGF165-transfected BMSCs, could accelerate the remodeling of the reconstructed ligament. The cross-talk between TGFβ1 and VEGF165 has positive consequences, as TGFβ1/VEGF165-transfected BMSCs significantly promoted angiogenesis of the reconstructed ligament at 3, 6, 12 weeks, with the best mechanical properties being achieved at 24 weeks. Furthermore, co-expression of these genes is more powerful and efficient than single gene therapy.  相似文献   

4.
Modulation of Tie2 receptor activity by angiopoietin ligands is crucial for angiogenesis, blood vessel maturation, and vascular endothelium integrity. The role of the angiopoietin (Ang) and Tie system in myocardial infarction is not well understood. To investigate the participation of the Ang/Tie in myocardial infarction, adult Sprague-Dawley rats with ligation of the left anterior descending coronary artery to induce myocardial infarction were studied. Ang1, Ang2, Tie1, and Tie2 were measured immediately after ligation of the coronary artery, and at 6 h, 1 and 3 days, and 1, 2, 3 and 4 weeks after ligation by Northern blotting, Western blotting, and immunohistochemical staining. Ang2 mRNA significantly increased from 2 weeks (2.1-fold) to 4 weeks (2.9-fold) after the infarction in the left ventricular free wall. Tie2 mRNA increased significantly from 1 week (2.1-fold) to 4 weeks (3.8-fold) after the infarction. Ang2 protein also significantly increased from 3 days (1.9-fold) to 4 weeks (3-fold) after the infarction in the left ventricular free wall. Tie2 protein increased 2.4-fold at 3 weeks and 2.8-fold at 4 weeks after the infarction. Neither Ang1 nor Tie1 mRNA or protein showed any significant change at any time point after the infarction. The ratio of Ang2/Ang1 mRNA and protein in the study group was higher than that in the control group. Ang2 and Tie2 expression in nonischemic myocardium showed no significant change. Immunohistochemical study also showed increased immunoreactivity of Ang2 and Tie2 at the infarct border. In conclusion, Ang2 and Tie2 expressions significantly increased both spatial and temporal patterns after myocardial infarction in the rat ventricular myocardium, while Ang1 and Tie1 receptor expression did not.  相似文献   

5.
Increased interest in development of combined gene therapy emerges from results of recent clinical trials that indicate good safety yet unexpected low efficacy of "single-gene" administration. Multiple studies showed that vascular endothelial growth factor 165 aminoacid form (VEGF165) and hepatocyte growth factor (HGF) can be used for induction of angiogenesis in ischemic myocardium and skeletal muscle. Gene transfer system composed of a novel cytomegalovirus-based (CMV) plasmid vector and codon-optimized human VEGF165 and HGF genes combined with intramuscular low-voltage electroporation was developed and tested in vitro and in vivo. Studies in HEK293T cell culture, murine skeletal muscle explants and ELISA of tissue homogenates showed efficacy of constructed plasmids. Functional activity of angiogenic proteins secreted by HEK293T after transfection by induction of tube formation in human umbilical vein endothelial cell (HUVEC) culture. HUVEC cells were used for in vitro experiments to assay the putative signaling pathways to be responsible for combined administration effect one of which could be the ERK1/2 pathway. In vivo tests of VEGF165 and HGF genes co-transfer were conceived in mouse model of hind limb ischemia. Intramuscular administration of plasmid encoding either VEGF165 or HGF gene resulted in increased perfusion compared to empty vector administration. Mice injected with a mixture of two plasmids (VEGF165+HGF) showed significant increase in perfusion compared to single plasmid injection. These findings were supported by increased CD31+ capillary and SMA+ vessel density in animals that received combined VEGF165 and HGF gene therapy compared to single gene therapy. Results of the study suggest that co-transfer of VEGF and HGF genes renders a robust angiogenic effect in ischemic skeletal muscle and may present interest as a potential therapeutic combination for treatment of ischemic disorders.  相似文献   

6.
Cellular therapy for myocardial injury has improved ventricular function in both animal and clinical studies, though the mechanism of benefit is unclear. This study was undertaken to examine the effects of cellular injection after infarction on myocardial elasticity. Coronary artery ligation of Lewis rats was followed by direct injection of human mesenchymal stem cells (MSCs) into the acutely ischemic myocardium. Two weeks postinfarct, myocardial elasticity was mapped by atomic force microscopy. MSC-injected hearts near the infarct region were twofold stiffer than myocardium from noninfarcted animals but softer than myocardium from vehicle-treated infarcted animals. After 8 wk, the following variables were evaluated: MSC engraftment and left ventricular geometry by histological methods, cardiac function with a pressure-volume conductance catheter, myocardial fibrosis by Masson Trichrome staining, vascularity by immunohistochemistry, and apoptosis by TdT-mediated dUTP nick-end labeling assay. The human cells engrafted and expressed a cardiomyocyte protein but stopped short of full differentiation and did not stimulate significant angiogenesis. MSC-injected hearts showed significantly less fibrosis than controls, as well as less left ventricular dilation, reduced apoptosis, increased myocardial thickness, and preservation of systolic and diastolic cardiac function. In summary, MSC injection after myocardial infarction did not regenerate contracting cardiomyocytes but reduced the stiffness of the subsequent scar and attenuated postinfarction remodeling, preserving some cardiac function. Improving scarred heart muscle compliance could be a functional benefit of cellular cardiomyoplasty.  相似文献   

7.
The functional benefit of cell transplantation after a myocardial infarction is diminished by early cell losses. IGF-1 enhances cell proliferation and survival. We hypothesized that IGF-1-transfected smooth muscle cells (SMCs) would enhance cell survival and improve engraftment after cell transplantation. The IGF-1 gene was transfected into male SMCs and compared with SMCs transfected with a plasmid vector (vector control) and nontransfected SMCs (cell control). IGF-1 mRNA (n=10/group) and protein levels (n=6/group) were higher (P <0.05 for all groups) at 3, 7, and 14 days compared with controls. VEGF was also increased in parallel to enhanced IGF-1 expression. IGF-1-transfected cells demonstrated greater cell proliferation, stimulated angiogenesis, and decreased caspase-3 activity after simulated ischemia and reperfusion (P <0.05 for all groups compared with vector or cell controls). A uniform left ventricular injury was produced in female rats using a cryoprobe. Three weeks later, 2 x 10(6) cells from three groups were implanted into the scar. One week later, IGF-1-transfected SMCs had increased myocardial IGF-1 and VEGF levels, increased Bcl2 expression, limited cell apoptosis, and enhanced vessel formation in the myocardial scar compared with the two control groups (P <0.05 for all groups). The proportion of SMCs surviving in the implanted region was greater (P <0.05) in the IGF-1-transfected group than in the vector or cell controls. Gene enhancement with IGF-1 improved donor cell proliferation, survival, and engraftment after cell transplantation, perhaps mediated by enhanced angiogenesis and reduced apoptosis.  相似文献   

8.
Manipulation of angiogenesis in vivo is an example of successful gene therapy strategies. Overexpression of angiogenic genes like VEGF, FGF or PDGF causes new vessel formation and improves the clinical state of patients. Gene therapy is a very promising procedure but requires large amounts of pharmaceutical-grade plasmid DNA. In this regard we have constructed a bicistronic plasmid DNA vector encoding two proangiogenic factors, VEGF165 and FGF-2. The construct (pVIF) contains the internal ribosome entry site (IRES) of the encephalomyocarditis virus (ECMV) which permits both genes to be translated from a single bicistronic mRNA. The IRES sequence allows for a high efficiency of gene expression in vivo. The pVIF vector was characterized in vitro and in vivo. In vivo angiogenesis studies showed that the bicistronic vector encoding two proangiogenic factors induces the formation of new vessels significantly more than pVEGF165 or pFGF-2 alone. In our opinion the combined proangiogenic approach with VEGF165 and FGF-2 is more powerful and efficient than single gene therapy. We also postulate that IRES sequence can serve as a useful device improving efficiency of gene therapy.  相似文献   

9.
For therapeutic angiogenesis to achieve clinical relevance, it must be effective, with minimal side effects to other end organ systems. We developed a cardiac-specific gene delivery mechanism by transfecting autologous vascular smooth muscle cells (VSMC) with VEGF and administering these cells via intracoronary injection. We evaluated the efficacy of this protocol by its ability to stimulate angiogenesis in the presence of a subthreshold stimulus for collateralization. A modified canine repetitive coronary occlusion model was utilized in these experiments with left anterior descending coronary artery occlusions for 2 min every 2 h four times per day for 21 days. An intramyocardial catheter in the perfusion territory of the left anterior descending coronary artery measured proteins in the myocardial interstitial fluid. VSMC from jugular vein explants were isolated, amplified in culture for 3 wk, and transfected with a plasmid expressing VEGF-165 and/or enhanced green fluorescent protein. Cells were injected before commencement of occlusions. VEGF levels in myocardial interstitial fluid were significantly higher in VEGF-transfected animals than in sham (repetitive occlusions without cell transplantation) and control (repetitive occlusions with enhanced green fluorescent protein-transfected cells) animals at the onset of occlusions (P < 0.05). In the VEGF group, collateral flow was increased at day 7 and remained higher than in sham and control groups thereafter. We found that intracoronary administration of VEGF-transfected autologous VSMC effectively promotes collateral development. This approach may provide a way to confine delivery of a gene to a specified organ, thus minimizing complications related to gene transfection in nontargeted organ systems.  相似文献   

10.
To explore the impact of myocardial injection of mesenchymal stem cells (MSCs) and specific recombinant human VEGF165 (hVEGF165) plasmid on collagen remodelling in rats with furazolidone induced dilated cardiomyopathy (DCM). DCM was induced by furazolidone (0.3 mg/bodyweight (g)/day per gavage for 8 weeks). Rats were then divided into four groups: (i) PBS group (n = 18): rats received equal volume myocardial PBS injection; (ii) MSCs group (n = 17): 100 μl culture medium containing 105 MSCs were injected into four sites of left ventricular free wall (25 μl per site); (iii) GENE group (n = 18): pCMVen‐MLC2v‐EGFP‐VEGF165 plasmid [5 × 109 pfu (0.2 ml)] were injected into four sites of left ventricular free wall (0.05 ml per site)] and (iv) MSCs+GENE group (n = 17): rats received both myocardial MSCs and pCMVen‐MLC2v‐EGFP‐VEGF165 plasmid injections. After 4 weeks, cardiac function was evaluated by echocardiography. Myocardial mRNA expressions of type I, type III collagen and transforming growth factor (TGF)‐β1 were detected by RT‐PCR. The protein expression of hVEGF165 was determined by Western blot. Myocardial protein expression of hVEGF165 was demonstrated in GENE and MSCs+GENE groups. Cardiac function was improved in MSCs, GENE and MSCs+GENE groups. Collagen volume fraction was significantly reduced and myocardial TGF‐β1 mRNA expression significantly down‐regulated in both GENE and MSCs+GENE groups, collagen type I/III ratio reduction was more significant in MSCs+GENE group than in MSCs or GENE group. Myocardial MSCs and hVEGF165 plasmid injection improves cardiac function possibly through down‐regulating myocardial TGF‐β1 expression and reducing the type I/III collagen ratio in this DCM rat model.  相似文献   

11.
Aims were to explore if darbepoietin-α in mouse can induce angiogenesis and if moderate doses after myocardial infarction stimulates periinfarct capillary and arteriolar densities, cell proliferation, and apoptosis. Myocardial infarction was induced by ligation of LAD. Mouse aortic rings (0.8 mm) were cultured in matrigel and the angiogenic sprouting was studied after addition of darbepoietin-α with and without VEGF-165. After 12 days the hemoglobin concentration was 25% higher in the darbepoietin-α treated mice than in the control group. No difference in capillary densities in the periinfarct or noninfarcted areas was seen with darbepoietin-α. Cell proliferation was about 10 times higher in the periinfarct area than in the noninfarcted wall. Darbepoietin-α treatment led to a decrease of cell proliferation (BrdU, (p < 0.02)) and apoptosis (TUNEL, p < 0.005) with about 30% in the periinfarct area. Darbepoietin-α and VEGF-165 both independently induced sprouting from aortic rings. The results suggest that darbepoietin-α can induce angiogenesis but that moderate doses after myocardial infarction are not angiogenic but antiapoptotic.  相似文献   

12.
Neuropilin-1 (NRP-1), a non-tyrosine kinase receptor of vascular endothelial growth factor-165 (VEGF165), was found expressed on endothelial and some tumor cells. Since its overexpression is correlated with tumor angiogenesis and progression, the targeting of NRP-1 could be a potential anti-cancer strategy. To explore this hypothesis, we identified a peptide inhibiting the VEGF165 binding to NRP-1 and we tested whether it was able to inhibit tumor growth and angiogenesis. To prove the target of peptide action, we assessed its effects on binding of radiolabeled VEGF165 to recombinant receptors and to cultured cells expressing only VEGFR-2 (KDR) or NRP-1. Antiangiogenic activity of the peptide was tested in vitro in tubulogenesis assays and in vivo in nude mice xenotransplanted in fat-pad with breast cancer MDA-MB-231 cells. Tumor volumes, vascularity and proliferation indices were determined. The selected peptide, ATWLPPR, inhibited the VEGF165 binding to NRP-1 but not to tyrosine kinase receptors, VEGFR-1 (flt-1) and KDR; nor did it bind to heparin. It diminished the VEGF-induced human umbilical vein endothelial cell proliferation and tubular formation on Matrigel and in co-culture with fibroblasts. Administration of ATWLPPR to nude mice inhibited the growth of MDA-MB-231 xenografts, and reduced blood vessel density and endothelial cell area but did not alter the proliferation indices of the tumor. In conclusion, ATWLPPR, a previously identified KDR-interacting peptide, was shown to inhibit the VEGF165 interactions with NRP-1 but not with KDR and to decrease the tumor angiogenesis and growth, thus validating, in vivo, NRP-1 as a possible target for antiangiogenic and antitumor agents.  相似文献   

13.
We previously demonstrated that a non sulfated analogue of heparin, phenylacetate carboxymethyl benzylamide dextran (NaPaC) inhibited angiogenesis. Here, we observed that NaPaC inhibited the VEGF165 binding to both VEGFR2 and NRP-1 and abolished VEGFR2 activity. Further, we explored the effects of NaPaC on VEGF165 interactions with its receptors, VEGFR2 and NRP-1, co-receptor of VEGFR2. Surface plasmon resonance and affinity gel electrophoresis showed that NaPaC interacted directly with VEGF165, VEGFR2 and NRP-1 but not with heparin-independent factor such as VEGF121. NaPaC completely inhibited the heparin binding to VEGF165, NRP-1 and VEGFR2. We found that NaPaC bound to all three molecules, VEGF165, VEGFR2 and NRP-1, but was more effective in inhibiting heparin binding to VEGF165. These results suggested that heparin binding sites of VEGFR2 and NRP-1 were different from those of VEGF165.  相似文献   

14.
This study was aimed at investigating whether Elabela (ELA) gene therapy can promote angiogenesis in the treatment of myocardial infarction (MI). The fusion expression plasmid pAAV-3 × Flag/ELA-32 was successfully constructed using molecular cloning technique. The model of acute MI was established by ligating the left anterior descending coronary artery in mice. Adeno-associated virus serotype 9 (AAV9) was injected into the surrounding myocardium and tail vein immediately after the model was established. AAV was injected again from the tail vein one week later. Compared with the MI+PBS (control) group, the serum N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration, and the values of left ventricular end-diastolic diameter (LVDd) and left ventricular end-systolic diameter (LVDs) of the MI+AAV-ELA (gene therapy) group were significantly decreased, while the value of left ventricular ejection fraction was significantly increased at 2 and 4 weeks after operation. Compared with the control group, the expression of CD105 and vWF and the percentage of CD31- and Ki67–co-positive cells were significantly increased in the gene therapy group. Moreover, the expressions of apelin peptide jejunum (APJ) receptor, vascular endothelial growth factor (VEGF), VEGFR2, Jagged1 and Notch3 in the heart tissue around the infarction were up-regulated in mice with gene therapy. The results suggest that ELA activates VEFG/VEGFR2 and Jagged1/Notch3 pathways through APJ to promote angiogenesis after myocardial infarction. ELA gene therapy may be used in the treatment of ischaemic cardiomyopathy in future.  相似文献   

15.
Apoptosis in the myocardium is linked to ischemia/reperfusion injury, and TNF-alpha induces apoptosis in cardiomyocytes. A significant amount of TNF-alpha is detected after ischemia and reperfusion. Soluble TNF-alpha receptor 1 (sTNFR1) is an extracellular domain of TNF-alpha receptor 1 and is an antagonist to TNF-alpha. In the present study, we examined the effects of sTNFR1 on infarct size in acute myocardial infarction (AMI) following ischemia/reperfusion. Male Wistar rats were subjected to left coronary artery (LCA) ligation. After 30 min of LCA occlusion, the temporary ligature on the LCA was released and blood flow was restored. Immediately after reperfusion, a total of 200 microg of sTNFR1 or LacZ plasmid was injected into three different sites of the left ventricular wall. At 6 h, 1 and 2 days after reperfusion, the TNF-alpha bioactivity in the myocardium was significantly higher in rats receiving LacZ plasmid than in sham-operated rats, whereas sTNFR1 plasmid significantly suppressed the increase in the TNF-alpha bioactivity. The sTNFR1 plasmid significantly reduced DNA fragmentation and caspase activity compared to the LacZ plasmid. Finally, the sTNFR1 expression-plasmid treatment significantly reduced the area of myocardial infarction at 2 days after ischemia/reperfusion compared to LacZ plasmid. In conclusion, the TNF-alpha bioactivity in the heart increased from the early stage of ischemia/reperfusion, and this increase was thought to contribute in part to the increased area of myocardial infarction. Suppression of TNF-alpha bioactivity with the sTNFR1 plasmid reduced the infarct size in AMI following ischemia and reperfusion.  相似文献   

16.
Mesenchymal stem cells (MSCs) are pluripotent cells that differentiate into a variety of cells, including cardiomyocytes and endothelial cells. However, little information is available regarding the therapeutic potency of systemically delivered MSCs for myocardial infarction. Accordingly, we investigated whether intravenously transplanted MSCs induce angiogenesis and myogenesis and improve cardiac function in rats with acute myocardial infarction. MSCs were isolated from bone marrow aspirates of isogenic adult rats and expanded ex vivo. At 3 h after coronary ligation, 5 x 10(6) MSCs (MSC group, n=12) or vehicle (control group, n=12) was intravenously administered to Lewis rats. Transplanted MSCs were preferentially attracted to the infarcted, but not the noninfarcted, myocardium. The engrafted MSCs were positive for cardiac markers: desmin, cardiac troponin T, and connexin43. On the other hand, some of the transplanted MSCs were positive for von Willebrand factor and formed vascular structures. Capillary density was markedly increased after MSC transplantation. Cardiac infarct size was significantly smaller in the MSC than in the control group (24 +/- 2 vs. 33 +/- 2%, P <0.05). MSC transplantation decreased left ventricular end-diastolic pressure and increased left ventricular maximum dP/dt (both P <0.05 vs. control). These results suggest that intravenous administration of MSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium.  相似文献   

17.
Co-expression of NRP1 and (VEGFR-2) KDR on the surface of endothelial cells (EC) enhances VEGF165 binding to KDR and EC chemotaxis in response to VEGF165. Overexpression of NRP1 by prostate tumor cells in vivo results in increased tumor angiogenesis and growth. We investigated the molecular mechanisms underlying NRP1-mediated angiogenesis by analyzing the association of NRP1 and KDR. An intracellular complex containing NRP1 and KDR was immunoprecipitated from EC by anti-NRP1 antibodies only in the presence of VEGF165. In contrast, VEGF121, which does not bind to NRP1, did not support complex formation. Complexes containing VEGF165, NRP1, and KDR were also formed in an intercellular fashion by co-culture of EC expressing KDR only, with cells expressing NRP1 only, for example, breast carcinoma cells. VEGF165 also mediated the binding of a soluble NRP1 dimer to cells expressing KDR only, confirming the formation of such complexes. Furthermore, the formation of complexes containing KDR and NRP1 markedly increased 125I-VEGF165 binding to KDR. Our results suggest that formation of a ternary complex of VEGF165, KDR, and NRP1 potentiates VEGF165 binding to KDR. These complexes are formed on the surface of EC and in a juxtacrine manner via association of tumor cell NRP1 and EC KDR.  相似文献   

18.
Summary This study investigates the long-term angiogenic effects of ANG-1 and VEGF in a swine chronic myocardial ischemia model. Four-weeks after gradual occlusion of the left circumflex coronary artery by ameroid constrictor, animals were injected with recombinant adenoviral vectors carrying either human ANG-1 (n=9), human VEGF165 (n=10) or empty vector (n=7) into the left ventricle free wall supplied by the constricted artery. Left ventricular perfusion in animals that received AdANG-1 (3.25±0.16 ml/min/g, p<0.05) recovered robustly 4 weeks after gene transfer while ischemia persisted in the AdVEGF (1.09±0.13 ml/min/g) and empty vector (1.20±0.03 ml/min/g) groups. Microvascular densities in the left ventricles of animals that received AdANG-1 (19.61±1.76/0.572 mm2 myocardial tissue, p<0.05) and AdVEGF (18.17±1.43/0.572 mm2 myocardial tissue, p<0.05) were significantly higher than animals that received empty vector (13.53±0.92/0.572 mm2 myocardial tissue) 12 weeks after gene transfer. ANG-1, but not VEGF, contributed to enhanced regional perfusion by increasing arteriolar density (1.9±0.4/0.572 mm2 myocardial tissue vs. 0.7±0.2/0.572 mm2 myocardial tissue, p<0.05) of large-sized (50–100 μm) arterioles. These data demonstrate that gene transfer of ANG-1 and VEGF enhances angiogenesis, but ANG-1 promotes sustained improvement of ventricular perfusion that expedites recovery of ischemic myocardium via arteriogenesis.  相似文献   

19.
Uncoupling of nitric oxide synthase (NOS) has been implicated in left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). We hypothesized that inducible NOS (iNOS) plays a crucial role in LV remodeling after MI, depending on its coupling status. MI was created in wild-type, iNOS-knockout (iNOS(-/-)), endothelial NOS-knockout (eNOS(-/-)), and neuronal NOS-knockout (nNOS(-/-)) mice. iNOS and nNOS expressions were increased after MI associated with an increase in nitrotyrosine formation. The area of myocardial fibrosis and LV end-diastolic volume and ejection fraction were more deteriorated in eNOS(-/-) mice compared with other genotypes of mice 4 wk after MI. The expression of GTP cyclohydrolase was reduced, and tetrahydrobiopterin (BH(4)) was depleted in the heart after MI. Oral administration of sepiapterin after MI increased dihydrobiopterin (BH(2)), BH(4), and BH(4)-to-BH(2) ratio in the infarcted but not sham-operated heart. The increase in BH(4)-to-BH(2) ratio was associated with inhibition of nitrotyrosine formation and an increase in nitrite plus nitrate. However, this inhibition of NOS uncoupling was blunted in iNOS(-/-) mice. Sepiapterin increased capillary density and prevented LV remodeling and dysfunction after MI in wild-type, eNOS(-/-), and nNOS(-/-) but not iNOS(-/-) mice. N(ω)-nitro-L-arginine methyl ester abrogated sepiapterin-induced increase in nitrite plus nitrate and angiogenesis and blocked the beneficial effects of sepiapterin on LV remodeling and function. These results suggest that sepiapterin enhances angiogenesis and functional recovery after MI by activating the salvage pathway for BH(4) synthesis and increasing bioavailable nitric oxide predominantly derived from iNOS.  相似文献   

20.
Summary Both cell therapy and angiogenic growth factor gene therapy have been applied to animal studies and clinical trials. Little is known about the direct comparison between cell therapy and angiogenic growth factor gene therapy. The goal of this study was to compare the effects of human bone marrow-derived mesenchymal stem cells (hMSCs) transplantation and injection of angiogenic growth factor genes in a model of acute myocardial infarction in mice. The hMSCs were obtained from adult human bone marrow and expanded in vitro. The purity and characteristics of hMSCs were identified by flow cytometry and immunophenotyping. Immediately after ligation of the left anterior descending coronary artery in male severe combined immunodeficient (SCID) mice, culture-expanded hMSCs or angiogenic growth factor genes were injected intramuscularly at the left anterior free wall. The engrafted hMSCs were positive for cardiac marker, desmin. Infarct size was significantly smaller in the hMSCs-treated group than in the angiopoietin-1 (Ang-1) or vascular endothelial growth factor (VEGF)-treated group at day 28 after infarction. hMSCs transplantation was better in decreasing left ventricular end-diastolic dimension and increasing fractional shortening than Ang1 or VEGF gene therapy. Capillary density was markedly increased after hMSCs transplantation than Ang1 and VEGF gene therapy. In conclusion, intramyocardial transplantation of hMSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium. hMSCs are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. Transplantation of MSCs may become the future therapy for acute myocardial infarction for myocardial regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号