首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
W S Young 《FEBS letters》1986,208(1):158-162
Corticotropin-releasing factor (CRF) stimulates the synthesis and release of adrenocorticotropin in the anterior pituitary and may help maintain fluid and electrolyte balance. 'Salt-loaded' rats had an increase in CRF mRNA in hypothalamic magnocellular neurons of the paraventricular and supraoptic nuclei and a decrease in message in the parvocellular paraventricular neurons. After salt-loaded rats were adrenalectomized, CRF mRNA increased in the parvocellular cells. In contrast to salt loading, water deprivation lead to a decrease in CRF mRNA in magnocellular and parvocellular neurons. These results show that CRF synthesis within separate populations of hypothalamic neurons is regulated differently under various conditions.  相似文献   

3.
《Hormones and behavior》2010,57(5):532-538
Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX. These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy.  相似文献   

4.
Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX. These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy.  相似文献   

5.
In addition to urocortin (Ucn I), Ucn II and Ucn III were identified as endogenous ligands for corticotropin-releasing factor type 2 receptor (CRF2 receptor). CRF2 receptor is abundantly located in central hypothalamic ventromedial nucleus (VMH) and in peripheral cardiovascular system. In this mini-review, we focused on the roles of these urocortins and CRF2 receptor in the hypothalamus and the cardiovascular system. Ucn II mRNA was increased in the parvocellular part or the magnocellular part of the hypothalamic paraventricular nucleus (PVN) following immobilization stress or 3 days of water deprivation, respectively. Therefore, it is thought that Ucn II may modulate CRF and vasopressin synthesis in the PVN in a paracrine or autocrine fashion through PVN CRF2 receptor. The early and later phases of Ucn I-mediated feeding suppression may be CRF1 and CRF2 receptor-mediated events, respectively. Ucn II decreases food intake at a later phase, beyond 4 h post injection. A large dose of corticosterone increased plasma leptin and insulin levels as well as the levels of CRF2 receptor mRNA. Adrenalectomy, starvation, and immobilization each lowered plasma leptin and insulin levels and were associated with decrements in CRF2 receptor mRNA levels in the VMH. Peripheral injection of leptin increased VMH CRF2 receptor mRNA, as can induce reductions of food intake and body weight, indicating that circulating leptin is involved in the regulation of VMH CRF2 receptor mRNA expression. Therefore, it is also plausible that VMH CRF2 receptor transduces the anorexogenic effects of leptin as well as those of urocortins. The systemic administration of Ucn II decreases mean arterial pressure (arterial vascular tone) and causes tachycardia via vascular CRF2 receptor in rats, similar to the effects of Ucn I. Thus, CRF2 receptor seems to mediate cardioprotective effects of urocortins.  相似文献   

6.
The expression of the corticotropin-releasing hormone (CRH) gene and the arginine vasopressin (AVP) gene in the hypothalamus examined in bilateral nephrectomized rats by in situ hybridization histochemistry. The expression of the CRH gene was significantly increased in the parvocellular part of the paraventricular nucleus (PVN) 12 and 20 h after bilateral nephrectomy in comparison with that after sham operation. The plasma concentration of adrenocorticotropic hormone (ACTH) in nephrectomized rats was significantly higher than that in sham operated rats 20 h after surgery. In contrast, the expression of the AVP gene in both the parvocellular and magnocellular parts of the PVN and throughout the supraoptic nucleus (SON) was significantly decreased 20 h after bilateral nephrectomy in comparison with that after sham operation. These results suggest that nephrectomy-induced upregulation of the CRH gene with elevation of plasma ACTH may be due to the activation of the hypothalamo-pituitary adrenal (HPA) axis.  相似文献   

7.
Inflammatory and infectious processes evoke neuroendocrine and behavioral changes known as acute-phase response that includes activation of the hypothalamo-pituitary-adrenal (HPA) axis and reduction of food intake. Besides its action as the most important ACTH secretagogue, corticotrophin-releasing factor (CRF), synthesized in the paraventricular nucleus (PVN), is also involved in the control of food intake. Alpha-melanocyte stimulating hormone (α-MSH) in the arcuate nucleus also plays a role in the energy homeostasis, possessing anorexigenic effects. To investigate the participation of neuropeptides involved in the regulation of food intake during endotoxemia, we administrated lipopolysaccharide (LPS) in sham-operated and adrenalectomized (ADX) male Wistar rats to evaluate food intake, hormone responses and Fos-CRF and Fos-α-MSH immunoreactivity in the PVN and arcuate nucleus, as well as CRF and POMC mRNA expression in these hypothalamic nuclei. In sham-operated rats, treatment with LPS (100 µg/kg) showed lower food intake, higher plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF double labeled neurons and CRF mRNA expression in the PVN, with no changes in Fos-α-MSH immunoreactivity and POMC mRNA expression in the arcuate nucleus, compared to saline treated rats. After LPS treatment, ADX rats showed further increase in plasma ACTH levels, marked decrease of food intake, higher Fos-CRF immunoreactive neurons in the PVN and CRF mRNA expression, as well as an increase in Fos-α-MSH immunoreactivity and POMC mRNA expression in the arcuate nucleus, compared to sham-operated rats treated with LPS. In conclusion, the present data indicate that the marked hypophagia during endotoxemia following ADX is associated with an increased activation of CRF and POMC neurons in the hypothalamus and an increased mRNA expression of these neuropeptides.  相似文献   

8.
To characterize the participation of vasopressin (AVP) and oxytocin (OT) in hypothalamus-pituitary-adrenal regulation after adrenalectomy (ADX), we evaluated corticosterone, ACTH, AVP and OT plasma concentrations and AVP and OT content of the paraventricular nucleus (PVN) at different periods (3 h, 1, 3, 7 and 14 days) in sham or ADX rats under basal conditions and after immobilization stress. ADX animals showed undetectable corticosterone levels, while sham animals showed a marked increase in corticosterone and ACTH 3 h after surgery, then lowering to basal control levels. ADX rats showed high basal ACTH levels with a triphasic response without changes after immobilization. After three hours, the ADX group showed higher OT levels than the sham group. OT was increased after immobilization stress in sham and ADX groups. AVP plasma levels did not change throughout the basal or stress studies in either group. There was a decrease in hypothalamic AVP content 1 and 3 days after ADX under basal and stress conditions. Plasma osmolality showed a significant decrease in the ADX group at 3, 7, and 14 days. In conclusion, there are different pituitary-adrenal axis set points after removal of the glucocorticoid negative feedback. The role of vasopressinergic and oxytocinergic neurons in the ACTH secretion after ADX or immobilization stress appears to differ. Magnocellular AVP is unlikely to contribute to ACTH secretion in response to ADX or immobilization stress. On the other hand, OT is elicited by immobilization stress and might contribute to the ACTH secretion during short-term ADX.  相似文献   

9.
Coexistence of CRF peptide and oxytocin mRNA in the paraventricular nucleus   总被引:4,自引:0,他引:4  
S Pretel  D T Piekut 《Peptides》1990,11(3):621-624
Several studies have reported coexistences of peptides in parvocellular neurons of the paraventricular nucleus (PVN). However, the coexistence of peptides in the magnocellular PVN is less clear. Controversy exists in particular about the coexistence of corticotropin-releasing factor (CRF) and oxytocin (OX). Although these peptides are present in distinct areas of the PVN, some overlap may exist. This study investigated a potential coexistence of OX and CRF in magno- and parvocellular PVN. The data demonstrate with clarity that neurons containing both the mRNA for OX and the peptide CRF are present in subpopulations of magnocellular and parvocellular neurons of the PVN.  相似文献   

10.
We assessed the effects of cold and isolation stress on arginine vasopressin (AVP) mRNA in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Vasopressin mRNA levels were determined by in situ hybridization histochemistry at the cellular level. In posterior magnocellular neurons of the PVN isolation stress for 7 or 14 days increased vasopressin mRNA levels 28 and 29%, respectively, compared to group-housed controls. No significant alterations in vasopressin gene expression were observed in the SON after 7 or 14 days of isolation stress. Scattered magnocellular AVP mRNA-expressing cells of the medial parvocellular PVN showed increases of 19 and 34% after 7 and 14 days of isolation, respectively. We also studied the effect of cold or combined cold and isolation stress on vasopressin gene expression in the PVN and SON. Cold stress for 3 h daily for 4 consecutive days increased AVP mRNA levels in the posterior magnocellular PVN by 15%. Cold-isolated animals showed an increase of 21%. No significant effect on AVP mRNA levels in the SON was observed. In contrast to the posterior magnocellular PVN, cold or cold-isolation stress increased AVP mRNA in magnocellular neurons of the medial parvocellular region of the PVN by 25 and 43%, respectively, relative to control rats. These results suggest that psychological and metabolic stress may be added to the list of stressors that activate the hypothalamo-neurohypophysial system.  相似文献   

11.
The immunoglobulin heavy chain binding protein (BiP) is an endoplasmic reticulum (ER) chaperone that facilitates the proper folding of newly synthesized secretory and transmembrane proteins. Here we report that BiP mRNA was expressed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in wild-type mice under basal conditions. Dual in situ hybridization in the SON and PVN demonstrated that BiP mRNA was expressed in almost all the neurons of arginine vasopressin (AVP), an antidiuretic hormone. BiP mRNA expression levels were increased in proportion to AVP mRNA expression in the SON and PVN under dehydration. These data suggest that BiP is involved in the homeostasis of ER function in the AVP neurons in the SON and PVN.  相似文献   

12.
Running training on the treadmill increases the resting hypothalamic corticotropin-releasing hormone (CRH) content in rats, though is still unknown whether and how it occurs in the parvocellular region of the hypothalamic paraventricular nucleus (PVN) where is a predominant region of pituitary-adrenal activity and where CRH and arginine vasopressin (AVP) are colocalized. We thus aimed at examining whether treadmill training would alter the CRH and AVP mRNA levels in the PVN at rest and during acute running with different lengths of a training regime. Male Wistar rats were subjected to treadmill running (approximately 25 m/min, 60 minutes/day, 5 times/week) for training regimes of 0, 1, 2 or 4 weeks. All training regimes induced an adrenal hypertrophy. Plasma corticosterone levels before acute running increased with lengthening the training period. Four weeks of training produced a significant increase in the resting CRH, but not AVP, mRNA levels in the PVN though relatively shorter training regimes did not. Acute responses of lactate and ACTH release were reduced after 2 and 4 weeks of training, respectively. The responsive PVN CRH mRNA level to acute running decreased with 4 weeks of training but increased with relatively shorter training regimes. These results indicate that running training changes the PVN CRH biosynthetic activity with the regime lasting for 4 weeks, which follows adaptive changes in adrenal functions. Thus, running training-induced changes in hypothalamic CRH activity would originate from the PVN and be induced according to the training period.  相似文献   

13.
Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.  相似文献   

14.
Adrenalectomy-induced hypophagia is associated with increased satiety-related responses, which involve neuronal activation of the nucleus of the solitary tract (NTS). Besides its effects on the pituitary–adrenal axis, corticotrophin-releasing factor (CRF) has been shown to play an important role in feeding behaviour, as it possesses anorexigenic effects. We evaluated feeding-induced CRF mRNA expression in the paraventricular nucleus (PVN) and the effects of pretreatment with CRF2 receptor antagonist (Antisauvagine-30, AS30) on food intake and activation of NTS neurons in response to feeding in adrenalectomised (ADX) rats. Compared to the sham group, ADX increased CRF mRNA levels in the PVN of fasted animals, which was further augmented by refeeding. AS30 treatment did not affect food intake in the sham and ADX + corticosterone (B) groups; however, it reversed hypophagia in the ADX group. In vehicle-pretreated animals, refeeding increased the number of Fos and Fos/TH-immunoreactive neurons in the NTS in the sham, ADX and ADX + B groups, with the highest number of neurons in the ADX animals. Similarly to its effect on food intake, pretreatment with AS30 in the ADX group also reversed the increased activation of NTS neurons induced by refeeding while having no effect in the sham and ADX + B animals. The present results show that adrenalectomy induces an increase in CRF mRNA expression in the PVN potentiated by feeding and that CRF2 receptor antagonist abolishes the anorexigenic effect and the increased activation of NTS induced by feeding in the ADX animals. These data indicate that increased activity of PVN CRF neurons modulates brainstem satiety-related responses, contributing to hypophagia after adrenalectomy.  相似文献   

15.
Estradiol (E2) plays an important role in controlling the homeostasis of body fluids. Several studies have reported the involvement of the hypothalamic pituitary adrenal axis (HPA) in the homeostatic control of hydromineral balance and the influence of estrogens on the modulation of this system. Nevertheless, until now, the physiological relevance of HPA axis activity on the hydromineral balance in females has not yet been fully elucidated. Therefore, the objective of the present study was to evaluate the effects of E2 (20 μg/animal) pretreatment on neuroendocrine and hydroelectrolyte changes induced by adrenalectomy (ADX) with or without glucocorticoid hormone replacement (corticosterone, CORT; 10 mg/kg) in ovariectomized rats (OVX). The results show that sodium appetite, natriuresis and the elevated plasma angiotensin II (ANG II) concentration induced by ADX were attenuated by E2 pretreatment. Additionally, a reduction of AT1 mRNA expression in the subfornical organ (SFO) and an increase in plasma atrial natriuretic peptide (ANP) concentrations by E2 pretreatment were observed. E2 pretreatment reversed the reduction in water intake induced by ADX in ADX CORT-replaced rats. Moreover, E2 pretreatment attenuated corticotropin releasing factor (CRF) mRNA expression in the paraventricular nucleus (PVN) induced by ADX. In contrast, E2 pretreatment increased CRF mRNA expression in the PVN in ADX CORT-replaced rats. Taken together, these results suggest that E2 has an important role in the modulation of behavioral and neuroendocrine responses involved in the maintenance of body fluid homeostasis in ADX rats with or without glucocorticoid replacement therapy.  相似文献   

16.
D T Piekut  S A Joseph 《Peptides》1986,7(5):891-898
New dual immunocytochemical staining procedures were used in the same tissue section to elucidate the distribution and co-existence of CRF and vasopressin in parvocellular neuronal perikarya in the paraventricular nucleus (PVN) of rat hypothalamus. CRF immunostained cells were for the most part concentrated in the medial parvocellular component of PVN. Few vasopressin-immunoreactive (ir) neurons were seen in this area in the normal and colchicine-treated animals. Vasopressin-containing neurons predominated in the magnocellular component of PVN. In the adrenalectomized and adrenalectomized-colchicine-treated animals, a dense accumulation of vasopressin-ir cells were observed in the medial parvocellular area of PVN; this region is normally vasopressin-ir poor and CRF-ir rich. The vasopressin immunostained cells appeared to have an anatomical distribution similar to that seen for CRF-containing cell bodies. Results of this study unequivocally establish the co-existence of vasopressin and CRF in the same parvocellular perikarya of PVN following pertubation of the pituitary-adrenal axis.  相似文献   

17.
Various kinds of stress cause neuroendocrine responses such as corticotropin-releasing hormone (CRH) or arginine vasopressin (AVP) release from parvocellular division of the paraventricular nucleus (PVN) and activation of the hypothalamo-pituitary adrenal (HPA) axis. We examined the effects of acute and chronic stress on the expression of the AVP-enhanced green fluorescent protein (eGFP) fusion gene in the hypothalamus, using chronic salt loading as an osmotic stimulation, intraperitoneal administration of lipopolysaccharide (LPS) as acute inflammatory stress and adjuvant arthritis (AA) as chronic inflammatory/nociceptive stress. Salt loading caused a marked increase in the eGFP gene expression and eGFP fluorescence in the supraoptic nucleus, magnocellular division of the PVN and internal layer of the median eminence (ME). Administration of LPS caused increased fluorescence in parvocellular division of the PVN and external layer of the ME. AA rats revealed an increased expression of the eGFP gene and eGFP fluorescence in both magnocellular and parvocellular divisions of the PVN and both internal and external layers of the ME. On the other hand, the levels of the CRH gene expression in parvocellular division of the PVN were significantly decreased as AA developed, though plasma concentrations of corticosterone were significantly increased. These results indicate that AVP-eGFP transgenic rats enable the detection of changes in AVP expression more easily than by using procedures such as immunohistochemistry. We propose that AVP-eGFP transgenic rats represent a useful animal model for further understanding of the physiology of AVP expression in the hypothalamo-pituitary system under various physiological conditions, including various kinds of stress.  相似文献   

18.
In response to forced swimming (FS), AVP is released somato-dendritically within the supraoptic nucleus (SON) and paraventricular nucleus (PVN), but not from neurohypophyseal terminals into blood. Together with AVP, oxytocin (OXT) is released within the SON and PVN. Here, we studied the role of intra-SON and intra-PVN OXT in the regulation of local AVP release and into the blood in male rats. Within the SON, bilateral retrodialysis of an OXT receptor antagonist (OXT-A) increased local AVP release in response to FS [60 s, 21 degrees C, vehicle twofold, not significant (ns); OXT-A: 15-fold increase, P < 0.05] without significantly affecting basal AVP release. In addition, local OXT-A elevated plasma AVP secretion under basal conditions (twofold increase, P < 0.05) without further elevation after FS. Within the PVN, exposure to FS elevated local AVP release, reaching significance only in the OXT-A group (vehicle: 1.4-fold, ns; OXT-A: 1.6-fold increase, P = 0.050). Bilateral OXT-A into the PVN did not affect peripheral AVP secretion either under basal or stress conditions. Basal ACTH concentrations tended to be elevated by local OXT-A within the PVN (1.7-fold increase, P = 0.076). In contrast, the swim-induced ACTH secretion was attenuated after retrodialysis of OXT-A within both the SON (at 5 min) and PVN (at 15 min) (P < 0.05 both) compared with vehicle. The results demonstrate a receptor-mediated effect of OXT within the SON and PVN on local and neurohypophyseal AVP release, which depends upon the activity conditions. Further, while exerting an inhibitory effect on hypothalamo-pituitary-adrenal axis activity under basal conditions, hypothalamic OXT is essential for an adequate acute ACTH response.  相似文献   

19.
S Kitazawa  S Shioda  Y Nakai 《Acta anatomica》1987,129(4):337-343
Catecholaminergic synaptic input to neurons containing corticotropin-releasing factor (CRF) in the parvocellular portion of the paraventricular nucleus (PVN) in the rat hypothalamus was observed. The experimental techniques used combine autoradiography after 3H-noradrenaline (3H-NA) injection or uptake of 5-hydroxydopamine (5-OHDA) with immunocytochemistry using CRF antiserum. CRF-like immunoreactive cell bodies and fibers in the PVN received synaptic inputs from the axon terminals in which a selective accumulation of 3H-NA or 5-OHDA was found. This finding suggests that the secretion of CRF neurons may be regulated via synapses by catecholaminergic neurons.  相似文献   

20.
Functional significance of neural projections from the hypothalamic dorsomedial nucleus (DMN) to the paraventricular nucleus (PVN) was investigated using surgical lesion of the central part of the DMN. Under basal conditions, DMN lesion resulted in a decrease in magnocellular vasopressin (AVP) mRNA levels in the PVN, rise in pituitary proopiomelancortin (POMC) mRNA concentrations and elevated plasma corticosterone levels. Corticotropin-releasing hormone (CRH) mRNA levels remained unaffected. In sham operated animals, osmotic stress induced by hypertonic saline injection failed to modify AVP mRNA, but increased CRH and POMC mRNA levels and peripheral hormone release. The rise in CRH mRNA levels after osmotic stress was potentiated in DMN lesioned animals. Thus, the DMN participates in the control of hypothalamic peptide gene expression and pituitary adrenocorticotropic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号