首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
14-3-3 proteins regulate the cell division cycle and play a pivotal role in blocking cell cycle advancement after activation of the DNA replication and DNA damage checkpoints. Here we describe a global proteomics analysis to identify proteins that bind to 14-3-3s during interphase and mitosis. 14-3-3-binding proteins were purified from extracts of interphase and mitotic HeLa cells using specific peptide elution from 14-3-3 zeta affinity columns. Proteins that specifically bound and eluted from the affinity columns were identified by microcapillary high pressure liquid chromatography tandem mass spectrometry analysis. Several known and novel 14-3-3-interacting proteins were identified in this screen. Identified proteins are involved in cell cycle regulation, signaling, metabolism, protein synthesis, nucleic acid binding, chromatin structure, protein folding, proteolysis, nucleolar function, and nuclear transport as well as several other cellular processes. In some cases 14-3-3 binding was cell cycle-dependent, whereas in other cases the binding was shown to be cell cycle-independent. This study adds to the growing list of human 14-3-3-binding proteins and implicates a role for 14-3-3 proteins in a plethora of essential biological processes.  相似文献   

2.
The present work describes a perchloric-acid-soluble high-mobility-group (HMG)-like protein present in HeLa and Ehrlich ascites cells, rat and calf liver. The protein is designated P1 and has, depending on the source, a molecular mass 48-53 kDa and an amino acid composition which, like the HMG proteins, is characterized by a high content of acidic and basic residues and of proline. The protein contains about 10 mol serine/100 mol amino acid residues, is highly phosphorylated and has, in contrast to the known HMG proteins, an acidic isoelectric point of 5.0. An estimate suggests that protein P1 in HeLa interphase cells contains 25-30 residues of phosphate. Like HMG 1 and 2 it is distributed between the nucleus and the cytoplasm. In HeLa metaphase cells P1 is further modified, resulting in an increase in apparent molecular mass from 53 kDa to 56 kDa.  相似文献   

3.
Fundamental differences were previously discovered in the ADP-ribosylation of proteins from metaphase chromosomes and interphase nuclei of HeLa cells. The number of modified nonhistone species was found to be dramatically reduced for metaphase chromosomes. An investigation has therefore been made of factors which could influence, and therefore be responsible for, this change in ADP-ribosylation during the cell cycle. Modified proteins were detected by autoradiography of sodium dodecyl sulfate-polyacrylamide gels containing mitotic and interphase samples from permeabilized cells that had been incubated with [32P]NAD. Whole cells showed a difference between interphase and metaphase similar to that for isolated nuclei and chromosomes. Chromosome expansion, disruption of chromosomes or nuclei, DNA nicking, and cellular growth activity significantly changed the incorporation of 32P label. Inhibitors of protein, RNA, and DNA synthesis did not, however, greatly affect ADP-ribosylation. The pattern of labeled species was not altered by the presence of nonradioactive NAD, though the extent of labeling declined. The results were not artifactually due to the procedure used to arrest cells in mitosis. Similar results were found with Novikoff rat hepatoma cells, demonstrating that the difference between metaphase and interphase is not confined to HeLa cells.  相似文献   

4.
Kinetic analysis of PFK-1 from rodent AS-30D, and human HeLa and MCF-7 carcinomas revealed sigmoidal [fructose 6-phosphate, Fru6P]-rate curves with different V(m) values when varying the allosteric activator fructose 2,6 bisphosphate (Fru2,6BP), AMP, Pi, NH(4)(+), or K(+). The rate equation that accurately predicted this behavior was the exclusive ligand binding concerted transition model together with non-essential hyperbolic activation. PFK-1 from rat liver and heart also exhibited the mixed cooperative-hyperbolic kinetic behavior regarding activators. Lowering pH induced decreased affinity for Fru6P, Fru2,6BP, citrate, and ATP (as inhibitor); as well as decreased V(m) and increased content of inactive (T) enzyme forms. High K(+) prompted increased (Fru6P) or decreased (activators) affinities; increased V(m); and increased content of active (R) enzyme forms. mRNA expression analysis and nucleotide sequencing showed that the three PFK-1 isoforms L, M, and C are transcribed in the three carcinomas. However, proteomic analysis indicated the predominant expression of L in liver, of M in heart and MCF-7 cells, of L>M in AS-30D cells, and of C in HeLa cells. PFK-1M showed the highest affinities for F6P and citrate and the lowest for ATP (substrate) and F2,6BP; PFK-1L showed the lowest affinity for F6P and the highest for F2,6BP; and PFK-1C exhibited the highest affinity for ATP (substrate) and the lowest for citrate. Thus, the present work documents the kinetic signature of each PFK-1 isoform, and facilitates the understanding of why this enzyme exerts significant or negligible glycolysis flux-control in normal or cancer cells, respectively, and how it regulates the onset of the Pasteur effect.  相似文献   

5.
1. Quantitative cytophotometric analysis of the interphase cells of a rapidly proliferating differentiated tissue such as liver of new born rat, indicates that these cells can be separated into two groups on the basis of their staining characteristics after methanol fixation. 2. These groups are thought to correspond to two stages of interphase. The first, called "autosynthetic interphase," comprises cells which are duplicating chromosomal material in preparation for mitosis, and shows parallel increases in the methyl green and Feulgen staining of DNA and the fast green staining of histone from the diploid (2 C) to double these values (4 C). 3. The second group is designated the "heterosynthetic interphase," during which the cell ceases proliferating and functions in a manner commensurate with its state of differentiation. In this stage Feulgen staining indicates the diploid chromosomal complement, but there is a decreased capacity of the DNA to bind methyl green and of the histone to bind fast green. 4. The difference between the methyl green binding of the heterosynthetic and autosynthetic 2 C cells is due to the presence of a protein in the former which presumably inhibits staining by competing with the dye for binding sites on the DNA. The effect of this inhibition can be removed by extracting the protein, or by blocking the protein basic groups. 5. The decreased fast green staining of histone in the heterosynthetic cells can be minimized by prolonged fixation with formaldehyde. It is thought to stem either from a similar type of inhibition, or from an increased susceptibility of the histone to loss from the cell during this stage. 6. While histone inhibits methyl green staining of DNA in all cells, the differences between the staining properties of the autosynthetic and heterosynthetic interphase cells are believed to be due to another protein, whose properties appear similar to those of the chromosomal "residual protein." It is concluded that a complex of DNA and residual protein existing during the heterosynthetic interphase is dissociated during the autosynthetic interphase.  相似文献   

6.
The ATP pools of monolayer cultures of rat embryo fibroblasts and rat liver cells (BRL-3A2) were labeled with [32P]H3PO4. The type II insulin-like growth factor (IGF) receptor was purified by affinity chromatography on wheat germ lectin-Sepharose and IGF-II-Sepharose columns. A phosphorylated species having the expected size of the type II receptor (Mr = 220,000 without reduction, Mr = 260,000 with reduction) was identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. IGF-II stimulated phosphorylation of the type II receptor in BRL-3A2 rat liver cells. Lability of the receptor phosphate bonds to alkaline pH suggests that the bulk of phosphorylation was occurring on serine residues.  相似文献   

7.
Biosynthesis and modification of Golgi mannosidase II in HeLa and 3T3 cells   总被引:28,自引:0,他引:28  
The biosynthesis and post-translational modification of mannosidase II, an enzyme required in the maturation of asparagine-linked oligosaccharides in the Golgi complex, has been investigated. Antibody raised against this enzyme purified from rat liver Golgi membranes was used to immunoprecipitate mannosidase II from rat liver, 3T3 cells, or HeLa cells. Mannosidase II immunoprecipitated from rat liver Golgi membranes, when analyzed by polyacrylamide gel electrophoresis, migrated with an apparent molecular weight of approximately 124,000. In contrast, the enzyme purified from rat liver Golgi membranes was shown to contain both the 124,000-dalton component and a 110,000-dalton polypeptide believed to result from degradation of intact mannosidase II during purification. Mannosidase II from 3T3 and HeLa cells migrated on polyacrylamide gels with apparent molecular weights of approximately 124,000 and 134,000-136,000, respectively. When immunoprecipitated from radiolabeled cultures, mannosidase II from both cell types was similar in the following respects: (a) the initial synthesis product had an apparent molecular weight of approximately 124,000; (b) in cultures treated with tunicamycin the initial synthesis product had an apparent molecular weight of approximately 117,000; (c) endoglycosidase H digestion of the initial synthesis product gave an apparent molecular weight similar to the tunicamycin-induced polypeptide; (d) the mature enzyme was mostly (HeLa) or entirely (3T3) resistant to digestion by endoglycosidase H. Loss of [35S]methionine from intracellular mannosidase II occurred with a half-life of approximately 20 h; there was no appreciable accumulation of labeled immuno-reactive material in the medium. HeLa mannosidase II, but not the 3T3 enzyme, was additionally modified 1-3 h after synthesis, the initial synthesis product being converted to a doublet with an apparent molecular weight of approximately 134,000-136,000. Evidence is presented that this mobility shift may result from O-glycosylation. Mannosidase II from both cell types could be labeled with [32P]phosphate or [35S]sulfate. The latter is apparently attached to oligosaccharide as indicated by inhibition of labeling by tunicamycin; the former was shown with the HeLa enzyme to be present as serine phosphate moieties. In addition, [3H]palmitate could be incorporated into the enzyme in 3T3 cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
N L Persoon  H J Sips  H Jansen 《Life sciences》1986,38(11):1029-1033
The culture fluid of Hep G2 human hepatoma cells contains triglyceridase activity resistant to high-salt concentrations. The lipase binds to Sepharose-heparin columns from which it can be eluted by 0.8 to 0.9 M NaCl. The nature of this lipase was studied using antibodies raised against "liver" lipases from human and rat origin. The anti-rat liver lipase inhibits both the postheparin human and rat plasma enzyme while the anti-human liver lipase has no effect on the rat enzyme. The lipase of the Hep G2 cultures showed affinity to the antibodies raised against rat as well as human "liver" lipase as shown by inhibition experiments. These results show that Hep G2 cells secrete "liver" lipase and that there seems to exist a structural homology between the lipases from rat and human origin.  相似文献   

9.
Interferometric and photometric measurements have been made on HeLa cells, a strain of cells originally derived from a human carcinoma. From a study of the relations between successive physical measurements on individual cells, it was confirmed that, whereas the net syntheses of nuclear RNA and nuclear protein are closely associated during interphase, they are dissociated from DNA replication to a significant extent. These results on nuclear metabolism agree with others previously reported in cell strains derived from tumors; they contrast with results from freshly prepared normal cells, where the net syntheses of DNA, nuclear RNA, and protein are closely associated during interphase. Cytoplasmic measurements on HeLa cells showed that much of the net synthesis of cytoplasmic RNA is associated with DNA replication as in normal cells, and they failed to detect transfer from the nucleus of a stable RNA component synthesized independently from DNA replication. In auxiliary experiments, an inhibition of the onset of DNA synthesis was produced by a dose of X-rays; under these conditions it was shown that the major part of the accumulation of nuclear protein was independent of DNA replication and that the accumulation of nuclear RNA was equivalent to or slightly less than that of nuclear protein. About half the accumulation of cytoplasmic RNA was inhibited when DNA synthesis was blocked.  相似文献   

10.
Characterization of glucocorticoid receptor in HeLa-S3 cells   总被引:1,自引:0,他引:1  
H Hoschützky  O Pongs 《Biochemistry》1985,24(25):7348-7356
Glucocorticoid receptor of the human cell line HeLa-S3 has been characterized and has been compared to rat and to mouse glucocorticoid receptors. If HeLa cells were lysed in the absence of glucocorticoid, glucocorticoid receptor was isolated in a nonactivated form, which did not bind to DNA-cellulose. If HeLa cells were preincubated with glucocorticoid, glucocorticoid receptor was isolated in an activated, DNA-binding form. HeLa cell glucocorticoid receptor bound [3H]triamcinolone acetonide with a dissociation constant (KD = 1.3 nM at 0 degrees C) that was similar to those of mouse and rat glucocorticoid receptors. Similarly, the relative binding affinities for steroid hormones decreased in the order of triamcinolone acetonide greater than dexamethasone greater than promegestone greater than methyltrienolone greater than aldosterone greater than or equal to moxestrol. Nonactivated and activated receptors were characterized by high-resolution anion-exchange chromatography (FPLC), DNA-cellulose chromatography, and sucrose gradient centrifugation. Human, mouse, and rat nonactivated glucocorticoid receptors had very similar ionic and sedimentation properties. Activated glucocorticoid receptors were eluted at similar salt concentrations from DNA-cellulose columns but at different salt concentrations from the FPLC column. A monoclonal mouse anti-rat liver glucocorticoid receptor antibody [Westphal, H.M., Mugele, K., Beato, M., & Gehring, U. (1984) EMBO J. 3, 1493-1498] did not cross-react with HeLa cell glucocorticoid receptor. Glucocorticoid receptors of HeLa, HTC, and S49.1 cells were affinity labeled with [3H]dexamethasone and with [3H]dexamethasone 21-mesylate. The molecular weights of [3H]dexamethasone 21-mesylate labeled glucocorticoid receptors (MT 96 000 +/- 1000) were undistinguishable by polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
Preparations from bovine thymus tissue were analyzed for their inhibitory effects during in vitro lymphocyte proliferation. The results indicate that these preparations strongly inhibit DNA synthesis in stimulated human peripheral lymphocytes, bone marrow cells, thymocytes and lymphoblastoid cells. This inhibition was dose-dependent and not due to cytotoxicity of the preparations. No inhibition was found of the spontaneous proliferation of HeLa cells and human fibroblasts indicating that the inhibitory effect was specific for proliferating lymphocytes. Control preparations from bovine liver or kidney did not show any suppression in the test systems used.  相似文献   

14.
The biosynthesis of transcobalamin II was investigated in primary cultures of adult rat liver parenchymal cells maintained in serum-free media. The data indicate that these hepatocytes secrete a vitamin B12-binding substance into the culture medium which is identical to rat serum transcobalamin II as judged by the following criteria: (i) gel filtration on columns of Sephadex G-200; (ii) ion-exchange chromatography on columns of diethyl aminoethyl cellulose and carboxymethyl cellulose; (iii) polyacrylamide-gel electrophoresis at pH 9.5; and (iv) the ability to facilitate cellular vitamin B12 uptake by HeLa cells and mouse L-929 fibroblasts in culture. The secretion of transcobalamin II by the liver parenchymal cells was blocked by cycloheximide, puromycin, and p-fluorophenylalanine. The inhibition by cycloheximide, but not that of the other inhibitors, was partially reversed upon removal of the drug. The liver parenchymal cells incorporated radioactive amino acids into transcobalamin II which was absorbed from the growth medium using affinity chromatography on Sepharose containing covalently linked B12. Collectively, these data indicate that rat liver parenchymal cells, in culture, are capable of the biosynthesis de novo of transcobalamin II and the subsequent secretion of this protein into the culture media.  相似文献   

15.
A non-enzymic protein factor that increases the in vitro rate of synthesis by HeLa DNA polymerase alpha 15- to 30-fold with denatured DNA as template has been partially purified from the cytoplasmic fraction of HeLa cells. The stimulatory effect is highly specific for HeLa DNA polymerase alpha and for DNA templates that contain extensive regions of single-strandedness. Synthesis with denatured DNA as template presumably proceeds from 3'-hydroxyl termini formed at loop-back regions since the synthesized DNA product and template are covalently linked. The stimulatory protein factor chromatographs as a basic protein, has an approximate molecular weight of 30,000 daltons and binds with moderate affinity to denatured DNA cellulose, being eluted by o.4M NaCl. The purified factor lacks detectable DNA polymerase, exo- and endodeoxyribonuclease and RNA polymerase activities. It also does not promote helix-coil transitions with poly[d(A-T)] and Clostridium perfringens DNA.  相似文献   

16.
Single-stranded-DNA-binding proteins were analyzed in nuclei of differentiating rat cortex and cerebellar neurons. The developmental period investigated ranged from gestational day 19 (i.e. 3 days before term) to postnatal day 30. During this time both types of neurons undergo transition from proliferating, undifferentiated precursor cells to non-proliferating, terminally differentiated neurons. For comparison, nuclei from mature cortex glia and liver were also examined. Nuclei were isolated according to cell type, the proteins were 14C-labeled in vitro by reductive methylation and were fractionated by affinity chromatography on tandemly arranged columns of double-stranded and single-stranded DNA-cellulose. The columns were uncoupled and the proteins adsorbed to the single-stranded DNA were eluted with salt. They were then analyzed by high resolution two-dimensional gel electrophoresis followed by fluorography. This strategy ensured the selective detection of proteins that recognize single-stranded DNA specifically, and eliminated interference by proteins binding to DNA by simple ionic interaction as well as by proteins with affinity for double-stranded DNA. Many single-stranded-DNA-binding proteins showed conspicuous developmental fluctuations. In cortex neurons these took place around the time of birth and the first postnatal week, whereas in cerebellar neurons they occurred later and in a more protracted fashion. Thus, in both cortex and cerebellar neurons the protein changes followed a time course closely paralleling the arrest of cell division and the beginning of terminal differentiation. It is suggested that this approach may lead to the detection of putative regulatory proteins of the cell nucleus.  相似文献   

17.
18.
Circular dichroism studies show that low concentrations of phosphate ions induce folding of the H1 histones. Sulfate and perchlorate anions have effects similar to phosphate indicating the presence on H1 histones of binding sites with high affinity for ions with tetrahedral geometry. In fact, the structuring efficiency of different ions, as determined by the midpoint value of the effect/concentration curve, is 0.05 M for NaCl, 0.005 M for NaClO4, 0.001 M for sodium phosphate and 0.0003 M for sodium sulfate on H1 histone from Chaetopterus variopedatus sperm chromatin. Phosphate shows similar folding efficiency also on calf thymus and on sea-urchin sperm H1 histones. The effect of phosphate ions on the H1 molecule is observed also by differential absorption spectroscopy in the region of absorption of amino acid side-chains. Binding studies by gel filtration chromatography on Sephadex columns show that phosphate binding occurs in the presence of structuring concentrations of sodium chloride. About 9 ATP molecules bind to H1 histones derived from non-active cell chromatins while only 3.5 ATP molecules bind to H1 derived from active somatic chromatins. The fluorescence of the tyrosine residues of Chaetopterus sperm H1 is enhanced by chloride ions and heavily quenched by phosphate ions in correlation with structuring of the molecule, demonstrating direct interactions between tyrosine residues and phosphate ions. The defined and limited number of phosphate groups bound per histone molecule, the high affinity of the interaction and the effect on the structure of the histone suggest the participation of phosphate groups in the binding of H1 histones to DNA.  相似文献   

19.
K Riabowol  G Draetta  L Brizuela  D Vandre  D Beach 《Cell》1989,57(3):393-401
A homolog of the fission yeast cdc2-encoded protein kinase (p34) is a component of M phase promoting factor in Xenopus oocytes. The homologous kinase in human HeLa cells is maximally active during mitosis, suggesting a mitotic role in mammalian somatic cells. This has been directly investigated by microinjection of anti-p34 antibodies into serum-stimulated rat fibroblasts. DNA synthesis was unaffected but cell division was quantitatively blocked in injected cells. Injection of antibodies against p13suc1, a component of the p34 kinase complex, did not block mitosis but caused mitotic abnormalities resulting in cells containing multiple micronuclei in the subsequent interphase. p34 localized in the nucleus during interphase. During mitosis, a fraction tightly associated with centrosomes. p13 was more evenly distributed between the nucleus and cytoplasm. These observations demonstrate that cdc2 is a nuclear and centrosomal protein that is required for mitosis in mammalian cells.  相似文献   

20.
H A Gold  S Altman 《Cell》1986,44(2):243-249
HeLa cell RNAase P activity found in the flow-through of anti-Sm affinity columns can be separated into inactive RNA and protein components. These components can be used to reconstitute active hybrid enzyme complexes with purified subunits from E. coli RNAase P. The RNA in the HeLa cell fractions employed is enriched for species between 85 and 115 nucleotides long. This reconstitution assay is a convenient means of purifying the functional RNA and protein of HeLa cell RNAase P. Probes derived from the genes for the subunits of E. coli RNAase P hybridize to genomic DNA of gram-negative prokaryotic organisms, but no positive signals are seen with genomic DNA from a variety of eukaryotic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号