首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
微生物油脂及其生产工艺的研究进展   总被引:1,自引:0,他引:1  
微生物油脂是一种应用前景广阔的新型油脂资源,正越来越受到人们的重视,尤其在生产富含不饱和脂肪酸的功能性油脂方面已成为研究热点。该文对微生物油脂的特点及组成、产油微生物必备条件及常见种类、微生物油脂的生产工艺等方面进行了综述,展望了其研究的发展前景。  相似文献   

2.
微生物果胶酶研究进展   总被引:5,自引:0,他引:5  
果胶酶是一类分解果胶质的酶的总称,它能将复杂的果胶分解为半乳糖醛酸等小分子。目前果胶酶在食品、纺织、医药、造纸、环境、生物技术、饲料等领域得到广泛应用。果胶酶主要来自微生物。综述了微生物果胶酶生产菌的菌种、选育、鉴定、发酵方法和发酵条件优化,酶的分离纯化、酶学性质和分子生物学方面的研究进展,并介绍了果胶酶的应用进展,最后展望了微生物果胶酶研究的广阔前景。  相似文献   

3.
餐厨垃圾中含有丰富的营养物质,经生物转化过程可以合成对人类有用的化学品.某些产油微生物可以处理餐厨垃圾生产油脂,同时合成高附加值代谢产物如多不饱和脂肪酸、角鲨烯和类胡萝卜素等.这不仅能够降低生产成本,而且提高了产物的经济价值,具有极大的工业化应用潜力.文中主要概括了目前餐厨垃圾的处理研究现状,综述了产油微生物发酵餐厨垃...  相似文献   

4.
提高微生物油脂生产能力的研究进展   总被引:1,自引:0,他引:1  
郭小宇  杨兰  李宪臻  杨帆 《微生物学通报》2013,40(12):2295-2305
微生物油脂是生物柴油生产领域具有广阔前景的新油脂资源。然而, 利用产油微生物进行油脂的工业化生产仍存在限氮条件下油脂生产强度不够高、对廉价高氮生物质原料的利用效率低等瓶颈问题。随着近年来发酵工程、生物信息学及分子生物学技术的发展, 国内外研究者利用不同策略优化微生物油脂的生产条件, 并对其油脂积累代谢途径进行改造, 旨在获得适用于工业化生产的产油性能优良的油脂菌。本综述总结了国内外利用生化工程、基因工程以及新兴的转录因子工程策略提高产油微生物油脂生产强度和扩大产油微生物廉价底物利用范围方面的研究进展, 并展望了基于组学研究、模块途径工程以及反向代谢工程的综合策略在理性改造产油微生物以提高其油脂发酵性能中的应用。  相似文献   

5.
微生物除草剂的研究进展与展望   总被引:4,自引:1,他引:4  
综述了国内外微生物除草剂的研究进展,介绍5种已经商品化的微生物除草剂和包括真菌、根际细菌、病毒、放线菌4种具有除草潜能的微生物类型的除草剂,并对我国微生物除草剂的研究开发提出了建议。  相似文献   

6.
微生物几丁质酶的研究进展、应用及展望   总被引:1,自引:0,他引:1       下载免费PDF全文
刘力睿  潘杰  李猛 《生物资源》2020,42(5):494-504
几丁质普遍存在于地球的陆地和水生生态系统中,是地球上产量最丰富的有机大分子多聚物之一。几丁质酶在自然界中分布广泛,不仅有重要的生态意义,而且在生物技术方面应用广阔。介绍了几丁质的降解过程和几丁质酶的分类,着重阐明了几丁质酶在细菌、真菌、古菌中的分布,总结了近年来微生物几丁质酶的研究进展及其在环境废弃物管理、农业和医药等关键领域的应用,最后基于粤港澳大湾区丰富的海洋几丁质资源,对微生物几丁质酶在新兴海洋生物技术产业中的发展和贡献进行了展望。  相似文献   

7.
自然界中不可培养微生物的研究进展   总被引:3,自引:0,他引:3  
尽管微生物培养技术已经发展了几十年,但是环境中可培养的微生物比例仍然较低。目前研究者对微生物不可培养的原因有了进一步的了解,其关键在于:高浓度的营养基质、无法实现原位培养、不明确环境中微生物之间的相互作用、缺乏尖端的微生物检测方法等。研究者为了克服这些培养障碍,不断研究出许多提高微生物培养效率的方法,简要介绍改进培养基、发展新的培养条件等提高微生物可培养性的方法。  相似文献   

8.
微生物是地球上出现最早、分布最广、多样性最为丰富的生物类群。在地球演化三十多亿年的历史长河中,微生物不断适应和改变着不同时期的地球环境,与地球环境共进化。微生物微小的个体和长期的进化,使它们形成了极高的多样性,可以适应几乎任  相似文献   

9.
刘莎  陈从英 《微生物学报》2023,63(3):881-899
肠道中栖居着组成复杂、功能多样的微生物群,这些微生物群在宿主免疫、营养吸收、代谢调节等方面发挥着重要作用。随着测序技术的快速发展,肠道微生物研究通过16S rRNA基因测序和宏基因组测序产生了大量的数据,其中许多未组装的序列成为微生物“暗物质”。近年来,不少研究利用多种不同微生物分离培养方法,结合高通量鉴定技术,从人、小鼠、猪肠道中分离了大量的微生物,丰富了菌株资源,为解析微生物“暗物质”以及后续肠道微生物功能和应用研究提供了基础和保障。尽管微生物的可培养性受到多种因素的影响,大部分微生物尚处于“未培养”的状态,但无论是病因研究还是生理和遗传特征的解析都离不开微生物实体资源的获取。肠道微生物的分离培养对微生物研究从关联分析向菌群功能验证、因果机制解析和功能菌株开发的深入研究具有重要意义。本文旨在探讨和综述影响微生物可培养性的因素,总结回顾肠道微生物的培养方法并阐述肠道微生物培养研究的进展,以期为肠道微生物培养研究提供新的视角。  相似文献   

10.
深海微生物的研究进展   总被引:9,自引:0,他引:9  
从生态学的角度介绍了深海微生物的营养来源、生物多样性及相关研究方法并展望深海微生物资源的开发前景。  相似文献   

11.
建立了快速、准确测定微生物油脂中花生四烯酸(ARA)含量的气相色谱检测方法。选用DB-23毛细管色谱柱,设置合适的载气压力,采用FID检测器,对ARA含量进行了定量分析。测定结果表明:油脂中各脂肪酸组分可有效分离,分析时间仅需20 min,ARA的回收率为90.146%~100.634%,相对标准偏差为4.175%。  相似文献   

12.
Since 2008, European and German legislative initiatives for climate protection and reduced dependency on fossil resources led to the introduction of biofuels as CO2-reduced alternatives in the heating oil sector. In the case of biodiesel, customers were confronted with accelerated microbial contaminations during storage. Since then, other fuel alternatives, like hydrogenated vegetable oils (HVOs), gas-to-liquid (GtL) products, or oxymethylene ether (OME) have been developed. In this study, we use online monitoring of microbial CO2 production and the simulation of onset of microbial contamination to investigate the contamination potential of fuel alternatives during storage. As references, fossil heating oil of German refineries are used. Biodiesel blends with fossil heating oils confirmed the promotion of microbial activity. In stark contrast, OMEs have an antimicrobial effect. The paraffinic Fischer–Tropsch products and biogenic hydrogenation products demonstrate to be at least as resistant to microbial contamination as fossil heating oils despite allowing a diversity of representative microbes. Through mass spectrometry, elemental analysis, and microbial sequencing, we can discuss fuel properties that affect microbial contaminations. In summary, novel, non-fossil heating oils show clear differences in microbial resistance during long-term storage. Designing blends with an intrinsic resistance against microbial contamination and hence reduced activity might be an option.  相似文献   

13.
几丁质是自然界含量丰富的多糖,难溶于水,常被作为废弃物丢弃,造成资源浪费和环境污染.然而,其水解产物N-乙酰氨基葡萄糖(GlcNAc)是一种重要的功能氨糖类化合物,广泛应用于医药、保健及护肤品等领域,市场需求量大.因此,将几丁质转换为高附加值的GlcNAc具有重要意义.几丁质酶可专一性水解几丁质产生GlcNAc,用于G...  相似文献   

14.
海洋微生物宏基因组工程进展与展望   总被引:2,自引:0,他引:2  
据初步统计,生活于海洋环境包括大洋深处的微生物有100万种以上,构成了一个动态的遗传基因库,其中绝大多数微生物或者从来没有经过实验室培养,或者至今无法培养,因而其分类地位及其生态学功能尚未为人类所认识。随着16S rRNA序列分析与系统分类学的广泛应用,海洋微生物多样性研究领域已经发生了很可观的改变,这些变化极大的丰富了人们对的微生物多样性及其生态功能的认识和理解。这里结合笔者近十年来的工作实践,讨论近年来在海洋微生物资源开发利用方面的研究进展,提出一个带有自动化特征的宏基因组功能表达平台,探讨海洋微生物资源利用的新途径。可以预见在不久的将来,海洋环境宏基因组工程研究将在一定程度上使得传统未培养海洋微生物基因资源及其功能产物能够为人类所开发和利用。  相似文献   

15.
微生物农药因其环境友好、无化学残留、可持续控制等优点,在农林病虫害防治中具有重要的发展潜力。近年来,我国设施农业取得极大效益,面积急剧扩大,在农业中占较大比例。随着环保意识的提高,设施农业中的微生物农药施用逐渐推广,但相关研究相对匮乏。为此,本文阐述了设施农业微生物农药的研究发展现状,针对其在设施农业中的表现,提出改良途径,并展望了发展趋势。  相似文献   

16.
绿弯菌的研究现状及展望   总被引:5,自引:0,他引:5  
绿弯菌是一个深度分支的门级别细菌类群,广泛分布于生物圈各种生境。现已生效发表的绿弯菌构成9个纲,但仅包含56个种;基于分子生态学的研究结果表明尚有大量绿弯菌类群仍是未培养状态。绿弯菌形态多样,营养方式和代谢途径十分丰富,参与了C、N、S等一系列重要生源元素的生物地球化学循环过程。研究该类群不仅有助于认识环境中微生物的多样性及其代谢特征,从而更好的理解微生物参与的生态学过程,还有助于揭示微生物对环境的适应及其进化。本文主要综述了绿弯菌的发现历史、营养、代谢及其在元素循环中的作用,并总结了其分离培养和潜在应用价值,最后展望了未来的研究方向,旨在为深入探究绿弯菌的进化、培养和驱动地球化学元素循环等研究提供参考。  相似文献   

17.
蚯蚓如何影响土壤有机碳的固持是土壤生态学的关键科学问题之一。蚯蚓能同时促进土壤有机碳分解和稳定,这种两面作用带来的不确定性被研究者称为"蚯蚓困境"。研究证据和新兴的"土壤微生物碳泵"概念模型表明土壤微生物残留物是土壤有机质的主要贡献者。为系统了解蚯蚓对土壤微生物残留物的影响与可能的机制,研究分析和总结了已有的国内外蚯蚓与微生物残留物(氨基糖)的相关研究成果,表明:(1)过往的研究忽略了蚯蚓对微生物残留物的影响,导致这一方向的研究严重滞后;(2)蚯蚓对土壤微生物残留物影响的方向和大小仍有很大的不确定性,可供量化分析其驱动机制的研究还很缺乏。研究尝试将蚯蚓整合到"土壤微生物碳泵"概念框架中,分析蚯蚓影响土壤微生物残留物3个方面的可能机制,即:(1)改变土壤微生物量、群落结构,(2)改变微生物生理特性,(3)改变土壤团聚体结构等,影响土壤有机碳的积累。同时,本文提出了未来相关研究的6个重点方向,包括:(1)蚯蚓对微生物的选择性取食,(2)肠道介导的微生物"涨落"现象,(3)蚯蚓对矿质结合有机物的"破坏"与"重组",(4)蚯蚓引起的"激发"和"续埋"效应,(5)多生态型相互作用,(6)全球变化背景下的蚯蚓生态学等,以期为进一步揭示蚯蚓-微生物相互作用影响土壤有机碳累积与稳定性的机制提供参考。  相似文献   

18.
随着近代微生物学与地质学研究的不断发展和深入,微生物在矿业相关领域的基础和应用研究日益受到重视。本文总结了近年来微生物及其技术在找矿、选矿、采矿等方面的应用研究进展情况,并着重对微生物在矿产的成矿以及废弃矿区的环境修复方面的研究进行了详细介绍。  相似文献   

19.
能源微生物油脂技术进展   总被引:12,自引:2,他引:12  
微生物油脂技术是缓解生物柴油规模化生产原料短缺的有效途径之一。介绍了国内外利用产油真菌生产能源微生物油脂的现状,包括拓展发酵原料、选育优良菌株、建立新型调控策略和不同培养模式以及解析油脂过量积累的分子机制;概括了微生物油脂技术产业化面临的问题及其解决方案;最后指出了能源微生物油脂研究未来发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号