首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine whether O2 availability limited diaphragmatic performance, we subjected unanesthetized sheep to severe (n = 11) and moderate (n = 3) inspiratory flow resistive loads and studied the phrenic venous effluent. We measured transdiaphragmatic pressure (Pdi), systemic arterial and phrenic venous blood gas tensions, and lactate and pyruvate concentrations. In four sheep with severe loads, we measured O2 saturation (SO2), O2 content, and hemoglobin. We found that with severe loads Pdi increased to 74.7 +/- 6.0 cmH2O by 40 min of loading, remained stable for 20-30 more min, then slowly decreased. In every sheep, arterial PCO2 increased when Pdi decreased. With moderate loads Pdi increased to and maintained levels of 40-55 cmH2O. With both loads, venous PO2, SO2, and O2 content decreased initially and then increased, so that the arteriovenous difference in O2 content decreased as loading continued. Hemoglobin increased slowly in three of four sheep. There were no appreciable changes in arterial or venous lactate and pyruvate during loading or recovery. We conclude that the changes in venous PO2, SO2, and O2 content may be the result of changes in hemoglobin, blood flow to the diaphragm, or limitation of O2 diffusion. Our data do not support the hypothesis that in sheep subjected to inspiratory flow resistive loads O2 availability limits diaphragmatic performance.  相似文献   

2.
In anesthetized mongrel dogs we measured the blood flow in the left phrenic artery (Qdi), using an electromagnetic flow probe, before and during supramaximal phrenic nerve stimulation (pacing). This was done at constant respiratory rate (24/min) but at three different stimulation frequencies at a duty cycle of 0.4 (20, 50, and 100 Hz) and at three different duty cycles at a stimulation frequency of 50 Hz (duty cycle = 0.2, 0.4, and 0.8). Qdi was unchanged during diaphragm contraction until transdiaphragmatic pressure (Pdi) was greater than approximately 11 cmH2O, whereafter it began to decrease, reaching zero at Pdi approximately 20 cmH2O. Thus, when Pdi was greater than 21 cmH2O, all flow occurred during relaxation. Qdi averaged over the entire respiratory cycle (Qt) was less at duty cycle = 0.8 than under the other conditions. This was because of decreasing length of relaxation phase rather than a difference of relaxation phase flow (Qr), which was maximal during all conditions of phrenic stimulation. During pacing-induced fatigue, Qt actually rose slightly as Pdi fell. This was due to an increase in contraction phase flow while Qr remained constant. The relationship between Qt and tension-time index was not unique but varied according to the different combinations of duty cycle and stimulus frequency.  相似文献   

3.
The combined effects of inspiratory resistive loaded breathing (IRL) and hypoxemia on transdiaphragmatic pressure (Pdi) in nine 1-mo-old Yorkshire piglets were studied. IRL was adjusted to increase spontaneously generated Pdi five to six times above baseline but maintain arterial PCO2 < 70 Torr to prevent hypercapnic depression of diaphragmatic contractility. Measurements of ventilation, blood gases and pH, Pdi, diaphragmatic electromyogram, Pdi during phrenic nerve stimulation, diaphragmatic blood flow, and end-expiratory lung volume were obtained at baseline, after 2 h of IRL, and then after 1 h of hypoxemia (arterial PO2 approximately 40 Torr) combined with IRL. Diaphragmatic muscle samples were obtained after study completion and immediately frozen in liquid nitrogen for determination of tissue ATP, phosphocreatine, lactate, and glycogen levels. Ten 1-mo-old piglets were subjected to IRL alone and served as controls. IRL alone resulted in significant impairment of Pdi generation. The addition of hypoxemia for 1 h did not further compromise Pdi in comparison to control animals who were subjected to IRL alone. Blood flow to both the costal and crural segments of the diaphragm increased significantly during IRL; the addition of the hypoxemic stress resulted in further significant augmentation of blood flow to both segments of the diaphragm. No differences were noted in diaphragmatic muscle tissue ATP, phosphocreatine, or glycogen between control and IRL animals or between control and IRL plus hypoxemia animals. Muscle lactate levels increased significantly in the IRL plus hypoxemia animals only. The data from this study suggest that moderate hypoxemia during resistive-loaded breathing in the piglet does not accentuate diaphragmatic fatigue.  相似文献   

4.
In a canine model, we investigated the effects of severe hypotension on the indexes of diaphragmatic failure. We measured 1) the transdiaphragmatic pressure obtained in response to 20- and 100-Hz stimulation of phrenic nerves (Pdi20 and Pdi100), 2) the power spectrum of diaphragmatic electromyogram (EMG), 3) the ratio of integrated diaphragmatic EMG to Pdi (Edi/Pdi), and 4) the rate of relaxation of Pdi100 and Pdi20. Arterial blood pressure (Pa) was reduced to 40-50 mmHg by a balloon inflated in the inferior vena cava and was maintained at this level until Pdi100 declined to 75% of the control value (100% shock time, ST). A recovery period of 60 min at normal Pa was allowed. During hypotension, Pdi100 and Pdi20 declined only at 100% ST [95.0 +/- 13.0 (SE) min]; however, only Pdi100 recovered within 15 min. The power spectrum shifted to low frequencies early and progressively during shock period. Edi/Pdi rose significantly at 80 and 100% ST and recovered within 15 min. The relaxation rate of Pdi20 and Pdi100 increased significantly at 100% ST only. We conclude that 1) diaphragmatic contractility is depressed during severe hypotension, 2) changes in the power spectrum occurred first in the shock state, followed by alterations in Edi/Pdi, and subsequently both changes in the frequency-pressure curve and relaxation rate occurred last.  相似文献   

5.
Assessing diaphragmatic contractility is a common goal in various situations. This assessment is mainly based on static or dynamic maximal voluntary maneuvers and twitch transdiaphragmatic pressures (Pdi) obtained by stimulation of the phrenic nerves (PS). PS eliminates the central components of diaphragmatic activation, but the available techniques of PS remain subject to some limitations. Transcutaneous PS is painful, and needle PS is potentially dangerous. Time-varying magnetic fields can stimulate nervous structures without pain and without adverse effects. In six subjects, we have studied cervical magnetic stimulation (CMS) as a method of PS. We have compared the stimulated Pdi (Pdistim) with the maximal Pdi obtained during static combined expulsive-Mueller maneuver (Pdimax) and with the Pdi generated during a sniff test (Pdisniff). CMS produced twitch Pdi averaging 33.4 +/- 9.7 cmH2O. Pdistim/Pdimax and Pdistim/Pdisniff were 24 +/- 6 and 41 +/- 14%, respectively. These values are comparable to those obtained in other studies with transcutaneous PS. They were highly reproducible in all the subjects. Electromyographic data provided evidence of bilateral maximal stimulation. CMS is a nonspecific method and may stimulate various nervous structures. However, diaphragmatic contraction was elicited by stimulation of the phrenic trunk, since the phrenicodiaphragmatic latencies (less than 7 ms) were in the range of values reported with direct stimulation of the trunk. Cocontraction of neck muscles, including the sternomastoid, was present, but its influence in the CMS-induced Pdi seems minimal. We conclude that magnetic stimulation is an easy, well-tolerated, reproducible safe, and valuable method to assess phrenic conduction and diaphragmatic twitch response.  相似文献   

6.
The intrabreath time course of phrenic artery blood perfusion (Qpha) was studied in five anesthetized dogs. The diaphragm was paced with submaximal levels of stimulation at various duty cycles (DC) to achieve tension-time index below and above the fatigue threshold (0.03-0.60). Left Qpha was measured via Doppler technique during control (inactive diaphragm) and during two submaximal levels of bilateral phrenic nerve stimulation sustained for 1 min. Measurements were done when Qpha reached steady state in each run. The frequency of pacing of each run was 10/min, and the DC ranged from 0.1 to 0.9 in 0.1 increments. Shortening of costal and crural segments was measured by sonomicrometry. It was found that Qpha during the diaphragmatic contraction phase (QphaC) was a sigmoidal function of DC and was not affected by the levels of transdiaphragmatic pressure (Pdi) explored (34-64% of maximal Pdi). Qpha during the diaphragmatic relaxation phase (QphaR) was a parabolic function of the DC, reaching an optimal value at DC of approximately 0.3 at any given Pdi. QphaR increased significantly with the preceding level of Pdi. QphaT (the sum of QphaC and QphaR) was a parabolic function of DC, reaching peak values at DC of 0.4-0.6 and then decreasing. This function was similar at two levels of Pdi. Post-pacing hyperemia was directly related to tension-time index greater than 0.20.  相似文献   

7.
The metabolic changes accompanying diaphragm fatigue caused by supramaximal stimulation of the phrenic nerves are incompletely described. In particular, we wished to determine whether the occurrence of anaerobic metabolism correlated with fatigue as defined by decline in force generation. In 10 anesthetized mechanically ventilated mongrel dogs we measured arterial pressure, transdiaphragmatic pressure (Pdi), phrenic arterial flow (Qdi-Doppler flow probe), arterial and phrenic venous blood gases, and lactate levels. From these we derived indexes of diaphragm O2 consumption (VO2) and lactate production. Bilateral phrenic nerve pacing was carried out (50 Hz, duty cycle 0.4, 24 contractions/min) for two 15-min pacing periods separated by a 45-min rest period. Over each pacing period Pdi decreased from approximately 16 to approximately 10 cmH2O (P less than 0.01, no significant difference between periods). Initially, during pacing, Qdi and VO2 each increased fivefold over prepacing base line. Qdi remained elevated at this level whereas VO2 decreased over the pacing period by approximately 25%. Hence, the change in VO2 over the pacing period was due primarily to changes in O2 extraction. During the first pacing period lactate production was observed early and declined throughout the pacing period. No lactate production was observed during the second pacing period, although Pdi, VO2, and Qdi responses were the same for both pacing periods. Phrenic venous PO2 remained greater than 30 Torr throughout both pacing periods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of increases in diaphragmatic muscle contractile activity on diaphragm blood flow remains unclear. The present study examined the effect of electrically induced isometric diaphragmatic muscle contractions on diaphragmatic blood flow. Studies were performed on diaphragmatic muscle strips prepared in anesthetized mechanically ventilated dogs. Diaphragmatic contractile activity was quantitated as the tension-time index (TTI) (i.e., the product of tension magnitude and duration). Blood flow to the strip (Qdi) was measured from the volume of the phrenic venous effluent using a drop counter. The separate effects on Qdi of 30-s periods of continuous and rhythmic contractions were examined. Qdi increased with increases in TTI and peaked at a TTI of 20-30% of maximum after which Qdi fell progressively with further increases in TTI. At levels of TTI greater than 30%, the pattern of muscle contraction significantly affected blood flow. Qdi was significantly lower during activity and the postcontraction hyperemia significantly greater at a given TTI when contractions were continuous than when contractions were intermittent. Above a TTI of 30%, Qdi during contraction decreased linearly with increases in duty cycle and curvilinearly with increases in tension. We conclude that during isometric diaphragmatic contractions, diaphragmatic blood flow may become mechanically impeded, and the magnitude of the impediment in blood flow depends on the pattern of diaphragmatic contractions. With increases in contractile activity above a critical level, changes in duty cycle exert progressively greater effects on diaphragmatic blood flow than changes in muscle tension.  相似文献   

9.
The extent to which diaphragmatic fatigue results from failure of neural drive has been investigated using twitch occlusion. Fatigue was induced by repeatedly generating transdiaphragmatic pressures (Pdi) of either 50 or 75% maximum Pdi (Pdimax) until approximately 10 min after the target Pdi could no longer be reached (Tlim). Maximal bilateral shocks delivered periodically to the phrenic nerves elicited Pdi twitches between breaths (Tr) and superimposed on the voluntary contractions (Ts). The ratio [1 - Ts/Tr], which provides an index of the degree of central nervous system muscle activation, increased as fatigue developed. However, superimposed twitches were still detectable at and beyond Tlim when all contractions involved maximal efforts. They were not seen in maximal contractions of the unfatigued muscle. Initially, the diaphragm electromyogram increased, but then declined. No impairment of neuromuscular transmission was seen. We conclude that at and beyond Tlim about one-half of the reduction in Pdimax resulted from reduced central motor drive; the remainder resulted from peripheral muscle contractile failure. No fatigue was evident during 50% Pdimax dynamic contractions.  相似文献   

10.
Previous work has assumed that left phrenic arterial blood flow (Qpa) reflects diaphragmatic blood flow. We have tested this assumption in four anesthetized mechanically ventilated dogs by measuring Qpa with a Doppler flow probe and regional diaphragmatic blood flow with radiolabeled microspheres. Flows were examined during control 1 (diaphragm at rest), pacing (phrenic pacing: rate 20/min, duty cycle 0.33), control 2, hypotension (rest with mean arterial pressure reduced by 45% of the control 1 value), and hypotension and pacing. As a percent of the control 1 value, Qpa was 511 +/- 107% during pacing, 139 +/- 12% during control 2, 40 +/- 13% during hypotension, and finally 347 +/- 31% during hypotension and pacing. Similarly, percent left hemidiaphragmatic blood flow (Qlh) was 362 +/- 91% during pacing, 91 +/- 10% during control 2, 14 +/- 2% during hypotension, and finally 213 +/- 50% during hypotension and pacing. The changes in flow to the left costal and crural diaphragm were similar to those recorded for Qlh. We conclude that Qpa correlates with total and regional diaphragmatic blood flow (r = 0.77-0.81, P less than 0.001) under conditions of supramaximal phrenic nerve stimulation in which the metabolic demands of the region perfused by the phrenic artery are presumed to be similar to the metabolic demands of the rest of the diaphragm.  相似文献   

11.
Effects of contraction frequency and duty cycle on diaphragmatic blood flow   总被引:1,自引:0,他引:1  
The effects of diaphragmatic contraction frequency (no. of intermittent tetanic contractions/min) at a given tension-time index and of duty cycle (contraction time/total cycle time) on diaphragmatic blood flow were measured in anesthetized mongrel dogs during bilateral supramaximal phrenic nerve stimulation. Diaphragmatic blood flow was measured by the radionuclide-labeled microsphere method. Contraction frequency was varied between 10 and 160/min at duty cycles of 0.25 and 0.75. Diaphragmatic blood flow increased with contraction frequency from 1.47 +/- 0.13 ml X min-1 X g-1 (mean +/- SE) at an average of 18/min to 2.65 +/- 0.16 ml X min-1 X g-1 at 74/min (P less than 0.01) with a duty cycle of 0.25 and from 1.32 +/- 0.19 ml X min-1 X g-1 at an average of 15/min to 1.96 +/- 0.15 ml X min-1 X g-1 at 80/min (P less than 0.02) with a duty cycle of 0.75. At higher contraction frequencies diaphragmatic blood flow did not increase further at both duty cycles. In addition, diaphragmatic blood flow was higher with a duty cycle of 0.25 than 0.75 at all contraction frequencies. We conclude that frequency of contraction is a major determinant of diaphragmatic blood flow and that high duty cycle impedes diaphragmatic blood flow.  相似文献   

12.
Phrenic arterial blood flow has been shown to increase during bilateral phrenic nerve stimulation (BPNS). However, the role of unilateral phrenic nerve stimulation [left (LPNS) or right (RPNS)] on the blood flow and O2 consumption of the contralateral hemidiaphragm is not known and is explored here. In six anesthetized, mechanically hyperventilated dogs, left phrenic arterial blood flow (Qlpha) was measured (Doppler technique). Supramaximal (10 V, 30 Hz, 0.25-ms duration) LPNS, RPNS, and BPNS at a pacing frequency 15/min and duty cycle of 0.50 were delivered in separate runs. Left hemidiaphragmatic blood samples for gas analyses were obtained by left phrenic venous cannulation. During RPNS, Qlpha and left hemidiaphragmatic O2 consumption (VO2ldi) did not change significantly compared with control. During LPNS and BPNS, there was a significant increase in Qlpha and VO2ldi (P less than 0.01). There was no significant difference in Qlpha and VO2ldi between LPNS and BPNS (P greater than 0.05). We conclude 1) that there is a complete independence of left-right hemidiaphragmatic circulation both at rest and during diaphragm pacing and 2) that during unilateral stimulation transdiaphragmatic pressure is not related to diaphragmatic blood flow.  相似文献   

13.
Aminophylline and human diaphragm strength in vivo   总被引:4,自引:0,他引:4  
The transdiaphragmatic pressure (Pdi) twitch response to single shocks from supramaximal bilateral phrenic nerve stimulation was studied before and after acute intravenous infusions of aminophylline [14.9 +/- 3.1 (SD) micrograms/ml] in nine normal subjects. Stimulation was performed with subjects in the sitting position against an occluded airway from end expiration. Baseline gastric pressure and abdominal and rib cage configuration were kept constant. There was no significant difference in peak twitch Pdi from the relaxed diaphragm between control (38.8 +/- 3.3 cmH2O) and aminophylline (40.2 +/- 5.2 cmH2O) experiments. Other twitch characteristics including contraction time, half-relaxation time, and maximum relaxation rate were also unchanged. The Pdi-twitch amplitude at different levels of voluntary Pdi was measured with the twitch occlusion technique, and this relationship was found to be similar under control conditions and after aminophylline. With this technique, maximum Pdi (Pdimax) was calculated as the Pdi at which stimulation would result in no Pdi twitch because all motor units are already maximally activated. No significant change was found in mean calculated Pdimax between control (146.9 +/- 27.0 cmH2O) and aminophylline (149.2 +/- 26.0 cmH2O) experiments. We conclude from this study that the acute administration of aminophylline at therapeutic concentrations does not significantly affect contractility or maximum strength of the normal human diaphragm in vivo.  相似文献   

14.
To study the changes in ventilation induced by inspiratory flow-resistive (IFR) loads, we applied moderate and severe IFR loads in chronically instrumented and awake sheep. We measured inspired minute ventilation (VI), ventilatory pattern [inspiratory time (TI), expiratory time (TE), respiratory cycle time (TT), tidal volume (VT), mean inspiratory flow (VT/TI), and respiratory duty cycle (TI/TT)], transdiaphragmatic pressure (Pdi), functional residual capacity (FRC), blood gas tensions, and recorded diaphragmatic electromyogram. With both moderate and severe loads, Pdi, TI, and TI/TT increased, TE, TT, VT, VT/TI, and VI decreased, and hypercapnia ensued. FRC did not change significantly with moderate loads but decreased by 30-40% with severe loads. With severe loads, arterial PCO2 (PaCO2) stabilized at approximately 60 Torr within 10-15 min and rose further to levels exceeding 80 Torr when Pdi dropped. This was associated with a lengthening in TE and a decrease in breathing frequency, VI, and TI/TT. We conclude that 1) timing and volume responses to IFR loads are not sufficient to prevent alveolar hypoventilation, 2) with severe loads the considerable increase in Pdi, TI/TT, and PaCO2 may reduce respiratory muscle endurance, and 3) the changes in ventilation associated with neuromuscular fatigue occur after the drop in Pdi. We believe that these ventilatory changes are dictated by the mechanical capability of the respiratory muscles or induced by a decrease in central neural output to these muscles or both.  相似文献   

15.
Effect of abdominal compression on maximum transdiaphragmatic pressure   总被引:1,自引:0,他引:1  
Transdiaphragmatic pressure (Pdi) is lower during maximum inspiratory effort with the diaphragm alone than when maximum inspiratory and expulsive efforts are combined. The increase in Pdi with expulsive effort has been attributed to increased neural activation of the diaphragm. Alternatively, the increase could be due to stretching of the contracted diaphragm. If this were so, Pdi measured during a combined maximum effort would overestimate the capacity of the diaphragm to generate inspiratory force. This study determined the likely contribution of stretching of the contracted diaphragm to estimates of maximum Pdi (Pdimax) obtained during combined inspiratory and expulsive effort. Three healthy trained subjects were studied standing. Diaphragmatic Mueller maneuvers were performed at functional residual capacity and sustained during subsequent abdominal compression by either abdominal muscle expulsive effort or externally applied pressure. Measurements were made of changes in abdominal (Pab) and pleural (Ppl) pressure, Pdi, rib cage and abdominal dimensions and respiratory electromyograms. Three reproducible performances of each maneuver from each subject were analyzed. When expulsive effort was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 86 +/- 12 to 148 +/- 14 (SD) cmH2O within the 1st s and was 128 +/- 14 cmH2O 2 s later. When external compression was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 87 +/- 16 to 171 +/- 19 cmH2O within the 1st s and was 152 +/- 16 cmH2O 2 s later.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The forces generated by the cat diaphragm (DIA) during different ventilatory and nonventilatory behaviors were determined by measuring transdiaphragmatic pressures (Pdi). The Pdi generated during eupnea was only approximately 12% of the maximum Pdi (Pdimax) generated by bilateral phrenic nerve stimulation. When the animals breathed a gas mixture of 10% O2 and 5% CO2, the Pdi increased to approximately 28% of Pdimax. During total airway occlusion, the Pdi generated by the diaphragm increased to approximately 49% of Pdimax. Only during the gag reflex and sneezing did Pdi reach maximal levels. A model for diaphragm motor unit recruitment during these different behaviors was presented based on the proportion of different motor unit types within the diaphragm, the relative tetanic tensions produced by each unit type, and the assumption of an orderly pattern of motor unit recruitment.  相似文献   

17.
本实验采用串脉冲刺激兔隔神经法复制了家兔膈肌疲劳模型。测定隔肌张力(Tdi)、跨膈压(Pdi)及其频率特性(Tdi-F、Pdi-F)、呼吸流速(V)、肺阻力(RL)、膈肌肌电图(EMGdi等作为评价膈肌收缩力量的指标。结果发现:经串脉冲刺激后,Pdi-F曲线在30、50和100Hz时显著降低,Pdi、Tdi、V和跨肺压均显著下降。氨茶碱可增加隔肌收缩力,延缓膈肌疲劳过程。结果提示,用串脉冲刺激兔膈神经法建立的模型是一种灵敏、可靠和稳定的膈肌疲劳动物模型。  相似文献   

18.
Maximum relaxation rate (MRR) and the time constant of relaxation (tau) of transdiaphragmatic pressure (Pdi) was measured in four male subjects and compared with the high-to-low frequency ratio (H/L) of the diaphragmatic electromyogram (EMG) as a predictor of diaphragmatic fatigue. Pdi and inspiratory time-to-total breath duration ratios (TI/TT) were varied, and TT and tidal volume were held constant; inspiratory resistances were used to increase Pdi. Studies were performed at various tension-time indices (TTdi = Pdi/Pdimax X TI/TT). Base-line MRR/Pdi was 0.0100 +/- 0.0004 (SE) ms-1, and baseline tau was 53.2 +/- 3.2 ms. At TTdi greater than 0.20, MRR and H/L decreased and tau increased, with maximum changes at the highest TTdi. At TTdi less than 0.20, there was no change in H/L, MRR, or tau. The time course of changes in H/L correlated with those of MRR and tau under fatiguing conditions. In this experimental setting, change in relaxation rate was as useful a predictor of diaphragmatic fatigue as fall in H/L of the diaphragmatic EMG.  相似文献   

19.
The effects of selective restriction of rib cage (Res,rc) and abdominal wall (Res,ab) movements on endurance of short-term constant-load heavy exercise and on diaphragmatic function during such exercise were examined in five normal young men. An inelastic surgical corset was used to achieve Res,rc and Res,ab. Subjects exercised on a cycle ergometer at 80% of their maximum power output to exhaustion on three occasions: with Res,rc, with Res,ab, and without restriction of chest wall movements (control). Transdiaphragmatic (Pdi), esophageal, and gastric pressures were measured. Electromyogram of the diaphragm was recorded by an esophageal electrode, and the ratio of the power content of a high-frequency to low-frequency band (H/L ratio) was measured. In addition, maximum Pdi (Pdimax) pre- and immediately postexercise was recorded. Res,rc was associated with a shorter endurance time, a progressive decline of the H/L ratio, and a significant reduction of Pdimax postexercise, whereas no such changes were found with Res,ab. We conclude that diaphragmatic function was well defended with abdominal wall loading, whereas limitation of rib cage expansion reduced diaphragmatic endurance during exercise. The diaphragmatic tension-time index (TTdi) in exercise was always less than the critical value of 0.15 found by Bellemare and Grassino (J. Appl. Physiol. 53: 1190-1195, 1982) when subjects inspired against large resistive loads at normal minute ventilations. We suggest that the higher inspiratory flow rate (P less than 0.05) and breathing frequency (P less than 0.05) account for the occurrence of diaphragmatic fatigue in exercise with Res,rc when the TTdi was 0.06 +/- 0.02.  相似文献   

20.
Transdiaphragmatic pressure (Pdi) and the rate of relaxation of the diaphragm (tau) were measured at functional residual capacity (FRC) in six normal seated subjects during single-twitch stimulation of both phrenic nerves. The latter were stimulated supramaximally with needle electrodes with square-wave impulses of 0.1-ms duration at 1 Hz before and after diaphragmatic fatigue produced by resistive loaded breathing. Constancy of chest wall configuration was achieved by monitoring the diameter of the abdomen and the rib cage with a respiratory inductive plethysmograph system. During control the peak Pdi generated during the phrenic stimulation amounted to 34.4 +/- 4.2 (SE) cmH2O and represented in each subject a fixed fraction (17%) of its maximal transdiaphragmatic pressure. After diaphragmatic fatigue the peak Pdi decreased by an average of 45%, amounting to 18.1 +/- 2.7 cmH2O 5 min after the fatigue run, and tau increased from 55.2 +/- 9 ms during control to 77 +/- 8 ms 5 min after the fatigue run. The decrease in peak Pdi and the increase in tau observed after the fatigue run persisted throughout the 30 min of the recovery period studied, the peak Pdi amounting to 18.4 +/- 2.8 and 18.9 +/- 3.3 cmH2O and tau to 81.3 +/- 5.7 and 88.7 +/- 10 ms at 15 and 30 min after the end of the fatigue run, respectively. It is concluded that diaphragmatic fatigue can be detected in man by bilateral phrenic stimulation with needle electrodes without any discomfort for the subject and that the decrease in diaphragmatic strength after fatigue is long lasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号