首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release of prostaglandin E2 and F, thromboxane B2 and 6-keto-prostaglandin F was measured in isolated human placental cotyledons perfused under high- and low-oxygen conditions. Also the effect of reoxygenation on prostaglandin production was studied. During the high-oxygen period, prostaglandin E2 accounted for 44 % and 6-keto-prostaglandin F for 28 % of all prostaglandin release, and the rank order of prostaglandin release was E2 > 6-keto-prostaglandin F > thromboxane B2 > prostaglandin F. Hypoxia had no significant effect on quantitative prostaglandin release, but the ration of prostaglandin E2 to prostaglandin F was significantly increased. After the hypoxic period during reoxygenation the release of 6-keto-prostaglandin F was significantly decreased, as was the ratio of 6-keto-prostaglandin F to thromboxane B2. Also the ratio of the vasodilating prostaglandins (E2, 6-keto-prostaglandin F) to the vasocontricting prostaglandins (thromboxane B2, prostaglandin F) was decreased during reoxygenation period. With the constant flow rate, the perfusion pressure increased during hypoxia in six and was unchanged in three preparation. The results indicate that changes in the tissue oxygenation in the placenta affect prostaglandin release in the fetal placental circulation. This may also have circulatory consequences.  相似文献   

2.
C3b or lipopolysaccharide treatment of human peripheral blood monocytes in culture stimulates an early release of thromboxane B2 and a delayed release of prostaglandin E into culture supernatants. Immunoreactive thromboxane B2 release is maximal from 2–8 h, whereas prostaglandin E release is maximal from 16–24 h after stimulation of monocytes in culture. We further examined this process by comparing the time course of labelled prostaglandin E2, prostaglandin E1 and thromboxane B2 release from human monocytes which were pulse or continuously labelled with [3H]arachidonic acid and [14C]eicosatrienoic acid. The release of labelled eicosanoids was compared with the release of immunoreactive prostaglandin E and thromboxane B2. The time course of prostaglandin E2 release was virtually identical to the release of prostaglandin E1 in all culture supernatants regardless of labelling conditions. However, release of immunoreactive prostaglandin E paralleled the release of labelled prostaglandin E1 and E2 only for continuously labelled cultures. The release of labelled prostaglandin E1 and E2 from pulse labelled cultures paralleled the release of thromboxane B2 and not immunoreactive prostaglandin. In contrast, labelled and immunoreactive thromboxane B2, quantitated in the same culture supernatants, demonstrated similar release patterns regardless of labelling conditions. These findings indicate that the differential pattern of prostaglandin E and thromboxane B2 release from human monocytes is not related to a time-dependent shift in the release of prostaglandin E1 relative to prostaglandin E2. Because thromboxane B2 and prostaglandin E2 are produced through cyclooxygenase mediated conversion of arachidonic acid, these results further suggest that prostaglandin E2 and thromboxane B2 are independently metabolized in human monocyte populations.  相似文献   

3.
S Murota  I Morita 《Prostaglandins》1978,15(2):297-301
The effects of prostaglandin I2, 6-ketoprostaglandin F1alpha, prostaglandin E1 and thromboxane B2 on the vascular permeability response in rat carrageenin granuloma were studied with the aid of 131I- and 125I-human serum albumin as indicators for the measurement of local vascular permeability. A single injection of 5 microgram of prostaglandin I2 methyl ester or I2 sodium salt into the locus of the granulomatous inflammation elevated local vascular permeability 2.0-2.5 times over the control within 30 min. The potency was equal to that of the positive control prostaglandin E1 which has been known to be the most potent mediator in this index among several candidate prostaglandins for chemical mediator of inflammation. The other prostaglandin and thromboxane B2 tested were essentially inactive.  相似文献   

4.
La3+ was found to inhibit the secretion of 5-hydroxytryptamine and the production of thromboxane B2 by washed platelets exposed to collagen or thrombin. In addition, La3+ inhibited secretion in response to sodium arachidonate, although the conversion of arachidonate to thromboxane B2 was not affected.La3+ was also found to enhance the accumulation of cyclic AMP under basal conditions and in response to prostaglandin E1, in washed platelets. The inhibition of cyclic AMP accumulation by ADP was prevented by La3+, suggesting that the effect of ADP on cyclic AMP metabolism was dependent upon the presence or flux of calcium at the platelet membrane.La3+ inhibited the activity of adenylate cyclase in platelet lysates both in response to prostaglandin E1 and to F?, indicating a possible effect at the catalytic subunit of the enzyme. None of the observed effects of La3+ could be reversed by the addition of Ca2+ up to 10 mM. The stimulation of cyclic AMP production by La3+ may largely explain the inhibitory effect of La3+ upon platelet secretion and thromboxane B2 production. These results also suggest that Ca2+ localised at the platelet plasma membrane may be important in the regulation of cyclic AMP metabolism.  相似文献   

5.
[14C]-labelled thromboxane B2 and hydroxy fatty acids were isolated using thin layer and gas chromatographic procedures from human platelets incubated with [1-14C]-arachidonic acid. A number of TLC solvent systems were evaluated for differential separation of thromboxanes and hydroxy fatty acids from prostaglandins E2, A2, D2 and F. Chromatographic properties in nine different solvent systems are tabulated. Two dimensional TLC procedures suitable for complete resolution of mixtures of these compounds on a single plate were developed. The systems were used to demonstrate conversion of [1-14C]-arachidonic acid to thromboxane B2 and prostaglandin E2 by human lung fibroblasts in tissue culture.  相似文献   

6.
Abortion or delivery were induced by extra-amniotic instillation of Rivanol during the second trimester in twelve patients and during the third trimester in two patients with fetal death and one patient with fetal acrania. Serial sampling of amniotic fluid was performed through a transabdominal catheter and the levels of free arachidonic acid (AA), prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), 6-keto-prostaglandin F1α (6-keto-PGF1α) and thromboxane B2 (TXB2) were determined. The levels of AA, PGF2α, PGE2, 6-keto-PGF1α and TXB2 in amniotic fluid increased significantly during induction with the exception of AA in fetal death which was high and remained constant during induction. Furthermore, PGF2α, 6-keto-PGF1α and TXB2 were all significantly correlated to AA.These observations suggested that free AA is released during Rivanol-induction of abortion and labour giving an increased synthesis of PGF2α, PGE2 prostacyclin and thromboxane A2 in the fetal membranes and the decidua but not in the fetus. This increase might be relevant for the initiation and progress of abortion and labour in these patients.  相似文献   

7.
Effect of various prostaglandins on the uptake of α-aminoisobutylic acid by cultured fibroblasts was studied. All the prostaglandins having an OH functional group in an intramolecular 5-membered ring showed an inhibitory effect on the amino acid uptake. The active compounds can be ranked in potency according to the values for the inhibition of the amino acid uptake per cent of control: prostaglandin F(53 %) >F(54 %) >D2(56 %) >E2(62 %) >thromboxane B2 (66 %). Thus, prostaglandin F was found to be the most potent inhibitor to membrane permeability and the inhibitory effect was dose dependent. The inhibition was maximal after 1 hour of exposure to prostaglandin F, persisted at least up to 6 hours in the presence of prostaglandin F.  相似文献   

8.
Fluorescent esters of the prostablandins D2, E2, F2α, and 6-keto-F1α and of thromboxane B2 have been prepared using the reagent 4-bromomethyl-7-methoxycoumarin. All of these derivatives can be separated in a single run either by thin-layer or high-performance liquid chromatography (TLC or HPLC). As little as 20 ng of PGE2 can be detected after derivatization and HPLC analysis. Identification of thromboxane B2 produced by human platelets and of 6-keto-PG F1α produced by bovine aortic microsomes has been achieved with this method.  相似文献   

9.
Thromboxane B2, 6-keto-Prostaglandin F, and Prostaglandin E2 release have been quantitated from cultured adult by bovine endothelial cell monolayers and from ex Vivo vascular segments employing specific radioimmunoassay and thin layer chromatography. Release of all three prostaglandins was demonstrable from both endothelial cell systems under basal conditions and following exposure to the ionophore A23187 and arachidonic acid. In culture, the quantity of 6-keto-PGF released was diminished compared to amounts released from the vessel segments while thromboxane B2 and prostaglandin E2 release were similar in the two endothelial model systems. However, the amount of thromboxane B2 assayed was small and the quantity of thromboxane A2 it represents is probably of little in Vivo significance to prostacyclin.  相似文献   

10.
(1) The chemotactic activities of thromboxane B2 (TxB2, PGE2, PGF, the 15-oxo, 15-oxo-13,14-dihydro and 13,14-dihydro metabolites of PGE2, PGF, and a metabolite of TxB2 for polymorphonuclear leucocytes (PMN) have been investigated.(2) Thromboxane B2 increased the directional migrationm of rat peritoneal PMN at a concentration of 2.0 μg/ml and of human peripheral neutrophils at a concentration of 0.5 μg/ml.(3) Neither PGE2, PGF nor their metabolites showed chemotactic activity for rat peritoneal PMN.(4) PGF and 15-oxo-13,14-dihydro-thromboxane B2 showed no chemotactic activity for human peripheral PMN.(5) The possible role of thromboxane B2 in inflammation is discussed.  相似文献   

11.
A possible mechanism to explain the suppression of mitogen-induced lymphocyte proliferation in vitro by histamine-stimulated mononuclear cells was investigated. In initial experiments, the inhibitory action of histamine-induced suppressor factor (HSF) on lymphocyte proliferation was documented to be reduced by the addition of indomethacin (1 μg/ml). Moreover, the addition of exogeneous PGE2 (10?7-10?8 M) to mononuclear cell cultures reconstituted HSF activity in the presence of indomethacin. In order to ascertain the nature of the target cell responding to HSF, control and suppressor supernatants were incubated with human lymphocytes or monocytes (5 × 106 cells/ml) for 24 hr. Following incubation, the supernatants were assayed for their content of prostaglandin E2, F, and thromboxane B2. Monocytes (but not lymphocytes) incubated with supernatants containing HSF increased their production of prostaglandin E2, F, and thromboxane B2 by 169, 53, and 49%, respectively. Suppressor supernatants were generated with histamine or an H-2 agonist (dimaprit) and chromatographed by gel filtration on Sephadex G-100. The elution profiles for the factor(s) inducing suppression of lymphocyte proliferation (25–40,000 daltons) and augmenting PGE2 production (25,000 daltons) overlapped but were not identical. Collectively, these data suggest that HSF-mediated inhibition of lymphocyte proliferation may occur in part through the augmented production of prostaglandins and/or thromboxane B2 by human monocytes.  相似文献   

12.
In an isotope dilution assay, prostaglandin (PG) E2, 6-keto-PGF, thromboxane (Tx) B2 and their metabolites PGE-M (11α-hydroxy-9,15-dioxo-2,3,4,5,20-pentanor-19-carboxyprostanoic acid), 2,3-dinor-6-keto-PGF, 2,3-dinor-TxB2 and 11-dehydro-TxB2 were determined in urine by gas chromatography—triple stage quadrupole mass spectrometry (GC—MS—MS). After addition of deuterated internal standards, the prostaglandins were derivatized to their methoximes and extracted with ethyl acetate—hexane. The sample was further derivatized to the pentafluorobenzylesters and purified by thin-layer chromatography (TLC). Three zones were scraped from the TLC plate. The prostanoid derivatives were converted to their trimethylsilyl ethers and the products were quantified by GC—MS—MS. In each run, two or three prostanoids were determined.  相似文献   

13.
We examined the effects of thromboxane synthetase inhibition with OKY-1581 and OKY-046 on pulmonary hemodynamics and lung fluid balance after thrombin-induced intravascular coagulation. Studies were made in anesthetized sheep prepared with lyng lymph fistulas. Pulmonary intravascular coagulation was induced by i.v. infusion of α-thrombin over a 15 min period. Thrombin infusion in control sheep resulted in immediate increases in pulmonary artery pressure (P ) and pulmonary vascular resistance (PVR), which associated with rapid 3-fold increase in pulmonary lymph flow (Q̇lym) and a delayed increase in lymph-to-plasma protein concentration (L/P) ratio, indicating an increase in the pulmonary microvascular permeability to proteins. Thrombin-induced intravascular coagulation alos increased arterial thromboxane B2 (a metabolite of thromboxane A2) and 6-keto-PGF concentrations (a metabolite of prostacyclin). Both OKY-1581 and OKY-046 prevented thromboxane B2 and 6-keto-PGF generation. The initial increments in P and PVR were attenuated in both treated groups. The increases in Q̇lym were gradual in the treated groups but attained the same levels as in control group. However, the increases in Q̇lym were associated with decreases in L/P ratio. In both treated groups, the leukocyte count decreased after thrombin infusion but then increased steadily above the baseline value, whereas the leukocyte count remained depressed in the control group after thrombin. These studies indicate that a part of the initial pulmonary vasoconstrictor response to thrombin-induced intravascular coagulation is mediated by thromboxane generation. In addition, thromboxane may also contribute to the increase in lung vascular permeability to proteins that occurs after intravascular coagulation and this effect may be mediated by a thromboxane-neutrophil interaction.  相似文献   

14.
Prostacyclin (Prostaglandin I2) effects on the rat kidney adenylate cyclase-cyclic AMP system were examined. Prostaglandin I2 and prostaglandin E2, from 8 · 10?4 to 8 · ?7 M stimulated adenylate cyclase to a similar extent in cortex and outer medulla. In inner medulla, prostaglandin I2 was more effective than prostaglandin E2 at all concentrations tested. Both prostaglandin I2 and prostaglandin E2 were additive with antidiuretic hormone in outer and inner medulla. Prostaglandin I2 and prostaglandin E2 were not additive in any area of the kidney, indicating both were working by similar mechanisms. Prostaglandin I2 stimulation of adenylate cyclase correlated with its ability to increase renal slice cyclic AMP content. Prostaglandin I2 and prostaglandin E2 (1.5 · 10?4 M) elevated cyclic AMP content in cortex and outer medulla slices. In inner medulla, with Santoquin® (0.1 mM) present to suppress endogenous prostaglandin synthesis, prostaglandin I2 and prostaglandin E2 increased cyclic AMP content. 6-Ketoprostaglandin F, the stable metabolite of prostaglandin I2, did not increase adenylate cyclase activity or tissue cyclic AMP content. Thus, prostaglandin I2 activates renal adenylate cyclase. This suggests that the physiological actions of prostaglandin I2 may be mediated through the adenylate cyclase-cyclic AMP system.  相似文献   

15.
The urinary excretion rate (ng/h/1.73 m2) of prostanoids was determined with a capillary gas-liquid chromatographic mass spectrometric method in 19 patients with cystic fibrosis (CF) aged 1–29 years. Patients with CF showed an increased excretion of prostaglandin E2 metabolites (PGE-M) and thromboxane B2 and its metabolites at all ages. An imbalance in the excretion pattern of thromboxane B2 metabolites also suggested a relative impairment of β-oxidation. There was no increased excretion of dinor-6-keto-PGF, indicating normal prostacyclin biosynthesis. No correlation was found to genotype, clinical score, lung function or bacterial colonization but a significant negative relation was found between the main prostanoids in the urine and serum phospholipid levels of essential fatty acids. The results show that, contrary to the generally accepted decrease of prostanoid excretion in essential fatty acid deficiency, patients with CF increase their production parallel to the development of the deficiency. Since prostanoid synthesis is rate limited by arachidonic acid release, our data support a previously presented hypothesis about a pathological regulation of the release of arachidonic acid in CF.  相似文献   

16.
Thromboxane A2 plays and important role in arachidonic acid- and prostaglandin H2-induced platelet aggregation. Agents that stimulate platelet adenylate cyclase (prostaglandin I2, prostaglandin I1, and prostaglandin E1) and dibutyryl cyclic AMP inhibit both thromboxane A2 formation and arachidonate-induced aggregation platelet-rich plasma. Despite complete suppression of aggregation with agents that elevate cyclic AMP, considerable thromboxane A2 is still formed. Prostaglandin H2-induced aggregations which bypass the cyclooxygenase regulatory step are also inhibited by agents that elevate cyclic AMP without any measurable effect on thromboxane A2 production. These data demonstrate that cyclic AMP can inhibit platelet aggregation by a mechanism independent of its ability to suppress the cycyooxygenase enzyme. Parallel experiments with washed platelet preparations suggest that they may be an inadequate mode for studying relationship between the platelet cyclooxygenase and platelet function.  相似文献   

17.

Background

Lyme disease is a common vector-borne disease caused by the spirochete Borrelia burgdorferi (Bb), which manifests as systemic and targeted tissue inflammation. Both in vitro and in vivo studies have shown that Bb-induced inflammation is primarily host-mediated, via cytokine or chemokine production that promotes leukocyte adhesion/migration. Whether Bb produces mediators that can directly alter the vascular permeability in vivo has not been investigated. The objective of the present study was to investigate if Bb produces a mediator(s) that can directly activate endothelial cells resulting in increases in permeability in intact microvessels in the absence of blood cells.

Methodology/Principal Findings

The effects of cell-free, spent culture medium from virulent (B31-A3) and avirulent (B31-A) B. burgdorferi on microvessel permeability and endothelial calcium concentration, [Ca2+]i, were examined in individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp). Endothelial [Ca2+]i, a necessary signal initiating hyperpermeability, was measured in Fura-2 loaded microvessels. B31-A3 spent medium caused a rapid and transient increase in Lp and endothelial [Ca2+]i. Within 2–5 min, the mean peak Lp increased to 5.6±0.9 times the control, and endothelial [Ca2+]i increased from 113±11 nM to a mean peak value of 324±35 nM. In contrast, neither endothelial [Ca2+]i nor Lp was altered by B31-A spent medium.

Conclusions/Significance

A mediator(s) produced by virulent Bb under culture conditions directly activates endothelial cells, resulting in increases in microvessel permeability. Most importantly, the production of this mediator is associated with Bb virulence and is likely produced by one or more of the 8 plasmid(s) missing from strain B31-A.  相似文献   

18.
CGS 13080 inhibited cell-free thromboxane synthetase with an IC50 of 3 nM. It was at least five orders of magnitude less potent toward other key enzymes involved in arachidonic acid metabolism. Submicromolar concentrations inhibited calcium ionophore-induced formation of thromboxane B2 by intact human platelets with concomitant accumulation of prostaglandin E2. Oral doses lower than 1 mg/kg in rats suppressed the elevations of plasma thromboxane B2 induced by calcium ionophore. This was attended by shunting of endoperoxide substrate to 6-keto-prostaglandin F1α and prostaglandin E2. CGS 13080 is one of the most potent and selective thromboxane synthetase inhibitors yet identified.  相似文献   

19.
The metabolism of arachidonic acid (AA) by caruncular and allantochorionic tissues and its regulation was studied in normal cows (n=13) and those with retained fetal membranes (RFM; n=9). Tissues were taken via the vagina about 6 hours postpartum and incubated for 6 hours in minimum essential medium containing tritiated AA alone or in the presence of oxytocin, platelet activating factor (PAF), epidermal growth factor (EGF) or ionophore calcium (A23187). The metabolites of AA were separated by reverse phase-high pressure-liquid chromatography. Tissue concentrations of prostaglandin F (PGF) and prostaglandin E2 (PGE2) and plasma 13,14-dihydro-15-keto-PGF (PGFM) concentration were also measured by radioimmunoassay. For caruncular tissue, less thromboxane B2 (TXB2) and more 6-keto prostaglandin F (PGIM) was synthesized in tissue from the animals with RFM than in the controls. Oxytocin, PAF, EGF and A23187 increased only PGIM production in the control animals; A23187 also decreased TBX2 synthesis. For the allantochorion, more PGE2, leukotriene B4 (LTB4) and PGIM and less TXB2, PGF and hydroxyecosatetranoic acids (HETE) was synthesized in tissue from cows with RFM than from animals that delivered normally. All of the substances used in this study increased PGIM, PGF and LTB4 and decreased TXB2 production by the allantochorionic tissue in control animals. The metabolism of AA by the allantochorionic tissue seems quantitatively under hormonal control. The metabolism of AA at the level of both maternal and fetal components of the placenta in cows with RFM differed from that seen in animals that expelled the membranes normally.  相似文献   

20.
THE acute inflammatory response following many types of tissue injury involves principally an increase in vascular permeability and the migration of leukocytes towards the inflammatory focus1. Although the complement system is known to be involved in the acute inflammatory response to allergic causes2,3, the nature of non-immunologically induced inflammation, however, is still rather obscure. We recently reported that prostaglandin E1 (PGE1) increased vascular permeability in rat skin and rat cremasteric muscle to a degree and in a pattern, not unlike that produced by histamine or serotonin4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号