首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stability of chromosomes carrying amplified CAD (carbamyl phosphate synthetase-aspartate transcarbamylase-dihydroorotase) or DHFR (dihydrofolate reductase) genes was studied in V79 Chinese hamster cell derivatives resistant to PALA (N-phosphonacetyl-L-aspartate) and MTX (methotrexate), respectively. Cells were maintained in the presence of the selective drugs during the study. In both metaphase chromosomes and interphase nuclei, amplified regions were localized by in situ hybridization. In MTX-resistant cells, the amplification-bearing chromosome moved sluggishly at anaphase and gave rise to bud-shaped formations in interphase nuclei. It is suggested that these buds could eventually separate as micronuclei. In both MTX- and PALA-resistant cells, amplified DNA was observed in micronuclei in interphase and in displaced chromosomes in metaphase. Finally, amplification-bearing dicentric chromosomes were found in both drug-resistant cell lines. Cumulatively, these observations indicate that the presence of the amplified region in a chromosome renders it unstable: chromosomes bearing an amplified region tended to be excluded from cells, and rearrangements were more frequent than in normal chromosomes.  相似文献   

2.
Unbalanced whole-arm translocations (WATs) of the long arm of chromosome 1, resulting in complete trisomy 1q, are chromosomal abnormalities detectable in both solid tumors and hematologic neoplasms. Among the WATs of 1q to acrocentric chromosomes, a few patients with der(1;15) described as a dicentric chromosome have been reported so far, whereas cases of der(1;14) are much rarer. We report on a case of der(1;14) detected as single anomaly in a patient with myelodysplastic syndrome. The aim of our work was to investigate the breakpoints of the (1;14) translocation leading to the der(1;14). Fluorescence in situ hybridization (FISH) experiments have been performed on chromosome preparations from bone marrow aspirate, using specific centromeric probes of both chromosomes, as well as a probe mapping to 1q11 band. FISH results showed that in our patient the derivative chromosome was monocentric with a unique centromere derived from chromosome 14. The breakpoints of the translocation were located in the short arm of chromosome 14 and in the long arm of chromosome 1, between the alphoid D1Z5 and the satellite II domains. The 1q breakpoint was within the pericentromeric region of chromosome 1, which is notoriously an unstable chromosomal region, involved in different chromosomal rearrangements.  相似文献   

3.
The introduction of a conditional centromere into chromosome III of Saccharomyces cerevisiae provided an opportunity to evaluate phenotypic and karyotypic consequences in cells harboring dicentric chromosomes upon entry into mitosis. A mitotic pause ensued, and monocentric derivatives of chromosome III were generated at a high frequency.  相似文献   

4.
FISH analysis of 41 previously karyotyped cases of MDS and AML with apparent monosomy of chromosome 20 revealed a variety of dicentric abnormalities involving chromosome 20. These usually, but not always, involved a breakpoint in the long arm of chromosome 20 and loss of the common deleted region at 20q12. Not one case of true monosomy 20 was confirmed. We found evidence for dicentric chromosome formation in 21 of 24 unbalanced translocations containing chromosome 20 and that were studied in more detail. Subsequent loss of one of the centromeres had occurred in eight of these 24 cases, and was more frequent than centromere inactivation as a means of resolving the inherent instability of a dicentric chromosome. In the three cases with dicentric chromosomes from which proximal 20q had been excised along with the 20 centromere, the excised segment was retained, and in two of these it was amplified. Proximal 20q was clearly retained in all but three cases, and present in three or more copies in 17 of 41 cases. The retention and amplification of proximal 20q provides support for the hypothesis that there is an oncogene located in this region of 20q that is activated in cases of MDS/AML with del(20q). Apparent monosomy 20 in MDS/AML should be treated as evidence of unidentified chromosome 20 abnormalities, and familiarity with the typical G-banded morphology of these derivatives can help with their identification. The reported incidence of dicentric chromosomes is clearly an under-estimate but is increasing in myeloid disorders as more cases are studied with methods allowing their detection.  相似文献   

5.
DNA double-strand breaks arise in vivo when a dicentric chromosome (two centromeres on one chromosome) goes through mitosis with the two centromeres attached to opposite spindle pole bodies. Repair of the DSBs generates phenotypic diversity due to the range of monocentric derivative chromosomes that arise. To explore whether DSBs may be differentially repaired as a function of their spatial position in the chromosome, we have examined the structure of monocentric derivative chromosomes from cells containing a suite of dicentric chromosomes in which the distance between the two centromeres ranges from 6.5 kb to 57.7 kb. Two major classes of repair products, homology-based (homologous recombination (HR) and single-strand annealing (SSA)) and end-joining (non-homologous (NHEJ) and micro-homology mediated (MMEJ)) were identified. The distribution of repair products varies as a function of distance between the two centromeres. Genetic dependencies on double strand break repair (Rad52), DNA ligase (Lif1), and S phase checkpoint (Mrc1) are indicative of distinct repair pathway choices for DNA breaks in the pericentromeric chromatin versus the arms.  相似文献   

6.
The dynamics of chromosome aberrations in human lymphocyte culture cells of the 1-st division after exposure in the G0 phase for 1h to functionally different alkylating mutagens - ethyleneimine derivatives (bifunctional phosphamide, threefunctional thiophosphamide, tetrafunctional dipine and pentafunctional photrin) was analysed. The frequency of chromosome aberrations was constant after exposure to "dicentric" mutagens (dipine, photrin) at all times of fixation, while under the action of "monocentric" mutagens (phosphamide, thiophosphamide) this declined significantly with increasing the duration of cultivation. The portion of aberrations of the chromatid remains unaltered in time, in case of both "dicentric" and "monocentric" mutagens, reaching 75% for "monocentric" and 50% for "dicentric" of the total number of chromosome aberrations.  相似文献   

7.

Background

The gross chromosomal rearrangements (GCRs) observed in S. cerevisiae mutants with increased rates of accumulating GCRs include predicted dicentric GCRs such as translocations, chromosome fusions and isoduplications. These GCRs resemble the genome rearrangements found as mutations underlying inherited diseases as well as in the karyotypes of many cancers exhibiting ongoing genome instability

Methodology/Principal Findings

The structures of predicted dicentric GCRs were analyzed using multiple strategies including array-comparative genomic hybridization, pulse field gel electrophoresis, PCR amplification of predicted breakpoints and sequencing. The dicentric GCRs were found to be unstable and to have undergone secondary rearrangements to produce stable monocentric GCRs. The types of secondary rearrangements observed included: non-homologous end joining (NHEJ)-dependent intramolecular deletion of centromeres; chromosome breakage followed by NHEJ-mediated circularization or broken-end fusion to another chromosome telomere; and homologous recombination (HR)-dependent non-reciprocal translocations apparently mediated by break-induced replication. A number of these GCRs appeared to have undergone multiple bridge-fusion-breakage cycles. We also observed examples of chromosomes with extensive ongoing end decay in mec1 tlc1 mutants, suggesting that Mec1 protects chromosome ends from degradation and contributes to telomere maintenance by HR.

Conclusions/Significance

HR between repeated sequences resulting in secondary rearrangements was the most prevalent pathway for resolution of dicentric GCRs regardless of the structure of the initial dicentric GCR, although at least three other resolution mechanisms were observed. The resolution of dicentric GCRs to stable rearranged chromosomes could in part account for the complex karyotypes seen in some cancers.  相似文献   

8.
We report on newborn monozygotic twins with a Noonan-like phenotype, and multiple congenital anomalies due to a monocentric recombinant chromosome 18. The mother carried a paracentric inversion of the long arm of chromosome 18, inv(18)(q21.1q22.3). Cytogenetic, fluorescent in situ hybridization, comparative genomic hybridization and DNA marker analyses allowed the delineation of the deleted (18q22.3–qter) and duplicated (18q12.1–q21.1) chromosomal regions in the recombinant chromosome 18, and suggest that this duplication-deletion chromosome 18 resulted from breakage of a dicentric recombinant chromosome 18 with subsequent reconstitution of telomeric sequences on the long arm. Marked variability is observed in the phenotypic expression of the same chromosomal anomaly in these monozygotic twins. The clinical findings of these patients are compared with those reported in proximal 18q-duplication and distal 18q-deletion patients. The clinical features of both infants are compatible with Noonan syndrome, suggesting that a locus for this syndrome may be located on the long arm of chromosome 18. Received: 16 April 1998 / Accepted: 17 June 1998  相似文献   

9.
We studied 16 cases of 8p duplications, with a karyotype 46,XX or XY,dup(8p), associated with mental retardation, facial dysmorphisms, and brain defects. We demonstrate that these 8p rearrangements can be either dicentric (6 cases) with the second centromere at the tip of the short arm or monocentric (10 cases). The distal 8p23 region, from D8S349 to the telomere, including the defensin 1 locus, is deleted in all the cases. The region spanning from D8S252 to D8S265, at the proximal 8p23 region, is present in single copy, and the remaining part of the abnormal 8 short arm is duplicated in the dicentric cases and partially duplicated in the monocentric ones. The distal edge of the duplication always spans up to D8S552 (8p23.1), while its proximal edge includes the centromere in the dicentric cases and varies from case to case in the monocentric ones. The analysis of DNA polymorphisms indicates that the rearrangement is consistently of maternal origin. In the deleted region, only paternal alleles were present in the patient. In the duplicated region, besides one paternal allele, some loci showed two different maternal alleles, while others, which were duplicated by FISH analysis, showed only one maternal allele. We hypothesize that, at maternal meiosis I, there was abnormal pairing of chromosomes 8 followed by anomalous crossover at the regions delimited by D8S552 and D8S35 and by D8S252 and D8S349, which presumably contain inverted repeated sequences. The resulting dicentric chromosome, 8qter-8p23.1(D8S552)::8p23.1-(D8S35)-8q ter, due to the presence of two centromeres, breaks at anaphase I, generating an inverted duplicated 8p, dicentric if the breakage occurs at the centromere or monocentric if it occurs between centromeres.  相似文献   

10.
M. R. Köhler  P. H. Vogt 《Chromosoma》1994,103(5):324-330
Cytogenetic analysis of aberrant human Y chromosomes was done by fluorescence in situ hydbridization (FISH) with Y specific repetitive DNA probes. It revealed an interstitial deletion of different DNA blocks in two dicentric chromosome structures. One deletion includes the total alphoid DNA structure of one centromeric region. The second deletion includes the total repetitive DYZ5 DNA structure in the pericentromeric region of one short Y arm. Both dicentric Y chromosomes were iso(Yp) chromosomes with break and fusion point located in Yq11, the euchromatic part of the long Y arm. Their phenotypic appearance was abnormal, resembling small monocentric Yq-chromosomes in metaphase plates. Mosaic cell lines, usually included in karyotypes with dicentric Y chromosomes, were not observed. It is assumed that both deletion events suppress the kinetochore activity in one Y centromeric region and thus stabilize its dicentric structure. Local interstitial deletion events had not been described in dicentric human Y chromosomes, but are common in dicentric yeast chromosomes. This raises the question of whether deletion events in dicentric human chromosomes are rare or restricted to the Y chromosome or also represent a general possibility for stabilization of a dicentric chromosome structure in human.  相似文献   

11.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

12.
Phosphorylation of serine 10 in histone H3 (H3S10ph) has been extensively analyzed and appears to be a conserved chromatin change associated with chromosome condensation in different eukaryotic organisms. In this work, we report the distribution of H3S10ph during meiosis in monocentric and holokinetic chromosomes of 6 insect species and in mitotic chromosomes of 7 mammalian species, aiming to investigate the labeling patterns in phylogenetically distant groups. The results indicated a very similar phosphorylation timing and distribution pattern among insects. The sex chromosomes of insects analyzed were always undercondensed and hypophosphorylated. Similarly, the micro chromosomes of the bug Pachylis aff pharaonis were also undercondensed and hypophosphorylated. Holokinetic chromosomes of bugs and monocentric chromosomes of grasshoppers and beetles displayed identical phosphorylation pattern in spite of the difference in the centromere type. Among mammals, a uniform chromosome phosphorylation was observed in marsupials, whereas bat chromosomes displayed a longitudinal banding pattern. These data indicate that, in general, the intensity of H3S10 phosphorylation in animal chromosomes is variable among the distinct chromosome types and associated with the degree of chromatin condensation at metaphase, but it may vary between different groups of animals.  相似文献   

13.
Summary Stable dicentric chromosomes behave as monocentrics because one of the centromeres is inactive. The cause of centromere inactivation is unknown; changes in centromere chromatin conformation and loss of centromeric DNA elements have been proposed as possible mechanisms. We studied the phenomenon of inactivation in two Y centromeres, having as a control genetically identical active Y centromeres. The two cases have the following karyotypes: 45,X/46,X,i(Y)(q12) and 46,XY/ 47,XY,+t(X;Y)(p22.3;p11.3). The analysis of the behaviour of the active and inactive Y chromosome centromeres after Da-Dapi staining, CREST immunofluorescence, and in situ hybridization with centromeric probes leads us to conclude that, in the case of the isochromosome, a true deletion of centromeric chromatin is responsible for its stability, whereas in the second case, stability of the dicentric (X;Y) is the result of centromere chromatin modification.  相似文献   

14.
A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae   总被引:16,自引:0,他引:16  
We have developed an assay in S. cerevisiae in which clones of cells that contain intact dicentric minichromosomes are visually distinct from those that have rearranged to monocentric minichromosomes. We find that the instability of dicentric minichromosomes is apparently due to mitotic nondisjunction accompanied by occasional structural rearrangements. Monocentric minichromosomes arising by rearrangement of the plasmid are rapidly selected in the population since dicentric minichromosomes depress the rate of cell division. We show that the ability of one centromere to compete with another in dicentric minichromosomes requires the presence of both of the conserved structural elements, CDE II and CDE III. Dicentric minichromosomes can be stabilized if one of the centromeres on the molecule is functionally hypomorphic because of mutations in CDE II even though these mutant centromeres are highly efficient in monocentric molecules. Stable dicentric molecules can also be produced by decreasing the space between two wild-type centromeres on the same molecule. These results suggest plausible pathways for changes in chromosome number that accompany evolution.  相似文献   

15.
The reaction of cells with micronuclei in respect of the induction of specific dicentric chromosomes with halogenated analogs of thymidine at various temperatures was studied. The positive correlation between the temperature and frequency of dicentrics was shown for all halogenated analogs of thymidine. The minimum frequency of dicentrics was found in the case when used 5-iododeoxyuridine and hypothermia (34 degrees C). The using of 5-bromodeoxyuridine at different temperatures displayed the intermediate results. The maximum level of dicentrics discovered under action of 5-chlorodeoxyuridine and hyperthermia (40 degrees C). In the former case the depression of mitotic chromosome condensation of micronuclei registered, in the latter one the chromosomes with portions of delayed spiralization were not found.  相似文献   

16.
This report describes a fluorescence in situ hybridization approach to chromosome staining that facilitates detection of structural aberrations and allows discrimination between dicentric chromosomes and symmetrically translocated chromosomes. In this approach, selected whole chromosomes are stained in one color by hybridization with composite probes whose elements have DNA sequence homology along the length of the target chromosomes. In addition, all chromosomes are counterstained with a DNA specific dye so that structural aberrations between target and non-target chromosomes are clearly visible. Discrimination between dicentric chromosomes and symmetrical translocations is accomplished by hybridization with a second probe that is homologous to DNA sequences found in the centromeric region of all chromosomes. The centromeric marker is visualized in a different color, so that the number of centromeres per aberrant chromosome can be rapidly determined in the microscope by changing excitation and fluorescence filters.by H.F. Willard  相似文献   

17.
N C Popescu  C R King  M H Kraus 《Genomics》1989,4(3):362-366
Through the use of a cDNA probe, the human erbB-2 gene was localized by in situ hybridization of normal human chromosomes at 17q11-q21. In situ hybridization of chromosomes derived from fibroblasts carrying a constitutional 15;17t(q22.3;q11.21) translocation showed that the erbB-2 gene was relocated on the rearranged chromosome 15. These results as well as grain localization on prophase chromosomes locate the erbB-2 gene at 17q12-q21.32. This localization may facilitate the search for human malignancies with chromosome changes involving the erbB-2 gene.  相似文献   

18.
The human gene for cystathionine beta-synthase (CBS), the enzyme deficient in classical homocystinuria, has been assigned to the subtelomeric region of band 21q22.3 by in situ hybridization of a rat cDNA probe to structurally rearranged chromosomes 21. The homologous locus in the mouse (Cbs) was mapped to the proximal half of mouse chromosome 17 by Southern analysis of Chinese hamster X mouse somatic cell hybrid DNA. Thus, CBS/Cbs and the gene for alpha A-crystalline (CRYA1/Crya-1 or Acry-1) form a conserved linkage group on human (HSA) chromosome region 21q22.3 and mouse (MMU) chromosome 17 region A-C. Features of Down syndrome (DS) caused by three copies of these genes should not be present in mice trisomic for MMU 16 that have been proposed as animal models for DS. Mice partially trisomic for MMU 16 or MMU 17 should allow gene-specific dissection of the trisomy 21 phenotype.  相似文献   

19.
We have integrated a plasmid containing a yeast centromere, CEN5, into the HIS4 region of chromosome III by transformation. Of the three transformant colonies examined, none contained a dicentric chromosome, but all contained a rearranged chromosome III. In one transformant, rearrangement occurred by homologous recombination between two Ty elements; one on the left arm and the other on the right arm of chromosome III. This event produced a ring chromosome (ring chromosome III) of about 60 kb consisting of CEN3 and all other sequences between the two Ty elements. In addition, a linear chromosome (chromosome IIIA) consisting of sequences distal to the two Ty elements including CEN5, but lacking 60 kb of sequences from the centromeric region, was produced. Two other transformants also contain a similarly altered linear chromosome III as well as an apparently normal copy of chromosome III. These results suggest that dicentric chromosomes cannot be maintained in yeast and that dicentric structures must be resolved for the cell to survive.--The meiotic segregation properties of ring chromosome III and linear chromosome IIIA were examined in diploid cells which also contained a normal chromosome III. Chromosome IIIA and normal chromosome III disjoined normally, indicating that homology or parallel location of the centromeric regions of these chromosomes are not essential for proper meiotic segregation. In contrast, the 60-kb ring chromosome III, which is homologous to the centromeric region of the normal chromosome III, did not appear to pair with fidelity with chromosome III.  相似文献   

20.
Y Z Zheng  R R Roseman  W R Carlson 《Genetics》1999,153(3):1435-1444
The B chromosome of maize has been used in a study of dicentric chromosomes. TB-9Sb is a translocation between the B and chromosome 9. The B-9 of TB-9Sb carries 60% of the short arm of 9. For construction of dicentrics, a modified B-9 chromosome was used, B-9-Dp9. It consists of the B-9 chromosome plus a duplicated 9S region attached to the distal end. In meiosis, fold-back pairing and crossing over in the duplicated region gives a chromatid-type dicentric B-9 that subsequently initiates a chromatid-type breakage-fusion-bridge cycle. In the male, it forms a single bridge in anaphase II of meiosis and at the first pollen mitosis. However, the cycle is interrupted by nondisjunction of the B centromere at the second pollen mitosis, which sends the B-9 dicentric to one pole and converts it from a chromatid dicentric to a chromosome dicentric. As expected, the new dicentric undergoes the chromosome-type breakage-fusion-bridge cycle and produces double bridges. A large number of plants with chromosome dicentrics were produced in this way. The presence of double bridges in the root cells of plants with a chromosome dicentric was studied during the first 10 wk of development. It was found that the number of plants and cells showing double bridges declined steadily over the 10-wk period. Several lines of evidence indicate that there was no specific developmental time for dicentric loss. "Healing" of broken chromosomes produced by dicentric breakage accounted for much of the dicentric loss. Healing produced a wide range of derived B-9 chromosomes, some large and some small. A group of minichromosomes found in these experiments probably represents the small end of the scale for B-9 derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号