首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
荔枝雄花性别决定过程中细胞超微结构的变化   总被引:4,自引:0,他引:4  
荔枝雄花雌蕊原基在大孢子母细胞减数分裂后开始衰退.内质网历经增生扩展,穿壁相连,同心缠绕,多条平行弯曲,不规则堆叠.内质网和高尔基体产生许多囊泡,囊泡在细胞内含物的降解和运输过程中起着重要的作用.线粒体在雌蕊原基细胞衰败的前、中期数量增加,后期分批降解.过氧化物酶体在雌蕊原基细胞衰败的中期紧挨核短暂出现.细胞核的染色质凝集断裂;核周腔扩大,形成胀泡;染色质趋边,外泄.细胞原生质表现出有序的、在膜包裹下的降解,首先是核糖体,而后依次是:过氧化物酶体、内质网、高尔基体、线粒体、核.雌蕊原基的衰败历程可能是一种程序性细胞死亡的过程.  相似文献   

2.
The analyses of faecal bile acids in colorectal cancer patients, breast cancer patients and healthy control subjects is described. Faecal excretion of total bile acids was similar in the three groups. The major bile acids detected were lithocholic acid (LCA) and deoxycholic acid (DCA) and the proportions of these (LCA:DCA ratio) were diametrically opposed in the colorectal cancer patients (1.91 +/- 0.33) and control subjects (0.90 +/- 0.09). Patients with adenocarcinoma of the breast also exhibited a higher LCA:DCA ratio (1.24 +/- 0.10) than the control group. The faecal LCA:DCA ratio is an important marker of cancer risk especially cancer of the large bowel and it is suggested that it may be a useful adjunct to future screening procedures.  相似文献   

3.
Effects of secondary bile acids on the intrauterine development in rats   总被引:2,自引:0,他引:2  
A Zimber  I Zusman 《Teratology》1990,42(3):215-224
The effects of secondary bile acids (lithocholic--LCA, and deoxycholic--DCA) on the in vivo development of rat embryos and fetuses were studied. Daily intraperitoneal injections of 2 ml of 1 mM LCA and of 5 mM DCA during days 6 till 15 of pregnancy resulted in an increase of resorptions among 20 day-old fetuses to 22.8% and 9.9%, respectively, vs. 6.2% in controls. Similar injections on days 12 to 19 resulted in an increase of resorptions to 10.3% after treatment with LCA and to 36% after treatment with DCA. Percent of retarded embryos was similar for both bile acids: 7.7 and 8.7% after injections on days 6-15 and 12.3-12.5% after injections on days 12-19 of gestation. This was accompanied by a significant increase in the wet weight of the placenta of living embryos. Intraamniotic injections of 2 microliters of 1 mM LCA into 10 day-old embryos resulted in 18.5% resorptions (vs. 7.5% in controls), 9.2% malformations, and 3.1% growth retardations observed on day 12 of pregnancy. The rate of resorptions following this treatment increased on day 20 of pregnancy to 71% vs. 16% in controls. No differences were found in the wet weight of 20 day-old living fetuses or their livers and placentas between experimental and control groups following i.p. or intraamniotic injections. In addition, single intrauterine instillation of 0.2 ml of 1 mM LCA 10-14 days before mating with normal isogeneic males resulted in 9% of malformations among 12 day-old embryos while malformations were absent in the saline-injected controls. The deleterious effects of secondary bile acids to the embryos were accompanied by damage to the visceral yolk sac. These findings may be significant in relation to the complications previously associated with cholestasis of pregnancy in humans.  相似文献   

4.
I Zusman  A Zimber 《Acta anatomica》1990,138(2):144-149
Effects of secondary bile acids--lithocholic (LCA) and deoxycholic (DCA)--on the in vitro development of early somite (10.5 days old) rat embryos were studied. It was shown that an addition to the culture medium of 0.1 mM LCA (final concentration) resulted in 9% growth-retarded and 12% malformed embryos when the duration of exposure was 24 h. When treatment with LCA was prolonged to 48 h, the rate of growth retardation increased to 18% and that of malformations to 40% versus 0.5% for both parameters observed in controls. This could be interpreted as a reversible or time-dependent effect of LCA on the in vitro development of the mammalian embryo. Culture of embryos in medium with 0.5 mM DCA resulted in 22% of growth retardation and 50% of malformations. DCA in 0.1 mM final concentration had only slight and statistically nonsignificant effects. Retardation of growth development could be demonstrated by a decrease in crown-rump length and the number of somites. Among malformed embryos, abnormalities in the development of the neural tube and exencephaly were the most common types of malformations. Abnormalities as well as growth retardation were accompanied by significant pathological changes in structure and perhaps in function of the endodermal visceral yolk sac cells. It could be suggested that secondary bile acids when present in pathophysiological concentrations can affect the embryonic development by direct inhibitory effects and that these effects may be time and dose dependent.  相似文献   

5.
Bile acid 7alpha-dehydroxylation by intestinal bacteria, which converts cholic acid and chenodeoxycholic acid to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, is an important function in the human intestine. Clostridium scindens is one of the most important bacterial species for bile acid 7alpha-dehydroxylation because C. scindens has high levels of bile acid 7alpha-dehydroxylating activity. We quantified C. scindens and secondary bile acids, DCA and LCA, in fecal samples from 40 healthy Japanese and investigated their correlation. Moreover, we used terminal restriction fragment length polymorphism (T-RFLP) analysis to investigate the effect of fecal microbiota on secondary bile acid levels. There was no correlation between C. scindens and secondary bile acid in fecal samples. On the other hand, T-RFLP analysis demonstrated that fecal microbiota associated with high levels of DCA were different from those associated with low levels of DCA, and furthermore that fecal microbiota in the elderly (over 72 years) were significantly different from those in younger adults (under 55 years). These results suggest that intestinal microbiota have a stronger effect on DCA level than does the number of C. scindens cells.  相似文献   

6.
Bile acids are biosynthesized from cholesterol in hepatocytes and usually localize in the enterohepatic circulation system. This system is regulated by several transporters that are expressed in the liver and intestine. Organic solute transporter (OST) α/β, which is known as a bidirectional transporter for some organic anions, contributes to the transport of bile acids; however, the transport properties of individual bile acids are not well understood. In this study, we investigated the transport properties of five bile acids (cholic acid [CA], chenodeoxycholic acid [CDCA], deoxycholic acid [DCA], ursodeoxycholic acid [UDCA], and lithocholic acid [LCA]) together with their glycine and taurine conjugates mediated by OSTα/β. Of the unconjugated bile acids, CA, CDCA, DCA, and LCA were taken up by OSTαβ/MDCKII cells more rapidly than mock cells, but no significant increase in the uptake of UDCA was observed. On the contrary, all glycine- and taurine-conjugated bile acids showed a significant increase in the uptake by OSTαβ/MDCKII cells. Saturable OSTα/β-mediated transports of CDCA, DCA, glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA), glycolithocholic acid (GLCA), taurochenodeoxycholic acid (TCDCA), and taurolithocholic acid (TLCA) were observed. The apparent Michaelis constants of CDCA, DCA, GCDCA, GDCA, GLCA, TCDCA, and TLCA for OSTα/β were 23.0 ± 4.0, 14.9 ± 1.9, 864.2 ± 80.7, 586.4 ± 43.2, 12.8 ± 0.5, 723.7 ± 4.8, and 23.9 ± 0.3 μM, respectively. However, the transport of other bile acids was not saturable. Our results indicate that OSTα/β has a low affinity but a high capacity for transporting bile acids.  相似文献   

7.
Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure.  相似文献   

8.
Secondary bile acids have long been postulated to be tumor promoters in the colon; however, their mechanism of action remains unclear. In this study, we examined the actions of bile acids at the cell membrane and found that they can perturb membrane structure by alteration of membrane microdomains. Depletion of membrane cholesterol by treating with methyl-beta-cyclodextrin suppressed deoxycholic acid (DCA)-induced apoptosis, and staining for cholesterol with filipin showed that DCA caused a marked rearrangement of this lipid in the membrane. Likewise, DCA was found to affect membrane distribution of caveolin-1, a marker protein that is enriched in caveolae membrane microdomains. Additionally, fluorescence anisotropy revealed that DCA causes a decrease in membrane fluidity consistent with the increase in membrane cholesterol content observed after 4 h of DCA treatment of HCT116 cells. Significantly, by using radiolabeled bile acids, we found that bile acids are able to interact with and localize to microdomains differently depending on their physicochemical properties. DCA was also found to induce tyrosine phosphorylation and activate the receptor tyrosine kinase epidermal growth factor receptor in a ligand-independent manner. In contrast, ursodeoxycholic acid did not exhibit any of these effects even though it interacted significantly with the microdomains. Collectively, these data suggest that bile acid-induced signaling is initiated through alterations of the plasma membrane structure and the redistribution of cholesterol.  相似文献   

9.
Intrahepatic cholestasis of pregnancy is always accompanied by adverse fetal outcomes such as malfunctions of respiration. Farnesoid X receptor (FXR) plays a critical role in the homeostasis of bile acids. Thus, we are determined to explore the effects of farnesoid X receptor (FXR) and five bile acids on respiratory rhythm generation and modulation of neonatal rats. Spontaneous periodic respiratory-related rhythmical discharge activity (RRDA) was recorded from hypoglossal nerves during the perfusion of modified Krebs solution. Group 1–6 was each given GW4064 and five bile acids of chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), cholic acid (CA) as well as ursodeoxycholic acid (UDCA) at different concentrations to identify their specific functions on respiratory rhythm modulations. Group 7 was applied to receive FXR blocker Z-guggulsterone and Z-guggulsterone with the above bile acids separately to explore the role of FXR in the respiratory rhythm modulation. Group 8 was given dimethyl sulfoxide (DMSO) as controls. Apart from UDCA, CDCA, DCA LCA and CA all exerted effects on RRDA recorded from hypoglossal nerves in a concentration-dependent manner. Respiratory cycle (RC), Inspiratory time (TI), Expiratory Time (TE) and Integral Amplitude (IA) were influenced and such effects could be reversed by Z-guggulsterone. FXR may contribute to the effects on the modulation of respiratory rhythm exerted by bile acids.  相似文献   

10.
In patients with gastroesophageal reflux disease (GERD), esophageal exposure to both acid and duodenogastroesophageal reflux are more common than to acid reflux alone, suggesting that acidic bile acid in duodenal juice may contribute to the pathophysiology and severity of GERD. However, the mechanism whereby esophageal mucosal epithelial cells react to bile acid remains unclear. We visually examined the real-time response of mouse esophageal epithelial cells to bile acids using calcium (Ca2+)-imaging methods. We investigated the effects of seven different bile acids. After stimulation for a few minutes, only Deoxycholate (DCA) under acidic conditions caused a elevation of intracellular Ca2+ concentration ([Ca2+]i)in the cells in dose- and pH-dependent manners. Conjugated bile acids had no effect on the cells. Viability assay of the cells in the presence of DCA was in good agreement with the calcium imaging data. Besides, DCA-induced [Ca2+]i increase in acidic conditions was observed not only in isolated primary cultured cells, but also in cells in the stratified squamous epithelium. This study suggests that DCA can pass through the anatomical barrier of the esophageal epithelium and induce calcium signaling in epithelial cells in a pH-dependent manner. This supports the hypothesis that bile acid reflux together with gastric acid can affect the esophageal mucosa, even under reflux times of a few minutes.  相似文献   

11.
The lymphoid cell population of thymus in the rattlesnake and king snake is similar to that of mammals. Lymphocytes occupy the interstices of an epithelial cell framework. An abudance of tonofilaments and desmosomes occupy the cytoplasm of epithelial cells with light, homogeneous nuclei and prominent nucleoli. Other epithelial cells contain phagocytized material in a dense cytoplasm which surrounds an irregular nucleus with heavily clumped chromatin. Small, granular vesicles are found within some epithelial cells. Myoid cells occur in the medullary area. In mature forms, myofibrils are arranged in a concentric fashion around the nucleus and occupy much of the cytoplasmic volume. The presence of developmental stages of these cells suggests their differentiation within the thymus of the adult animal.  相似文献   

12.
ABSTRACT The Ultrastructure of rectum epithelial cells in the mosquito larvae, Anopheles sinensis Wiedemann, was studied using electron microscope. The rectal epithelium forms rectal papillae composed of the absorptive cells and the surrounding basal cells. Moreover, rectal epithelium was covered with thin cuticular intima. Apical plasma membrane of the epithelial cells had infoldings and in between them, mitochondria developed into elongated shape were attached. In addition, the membrane infoldings reach down into the cell cytoplasm to form several layers of leaflet-like prolongations. On both sides of these prolongations were also large, well-developed mitochondria. Their formation was that mitochondria were attached to 3 μm length and 4–13 layers of membrane wrinkle lump. Many spherites, which are lamelated crystals that form an illusory structure in concentric circles inside of the cytoplasm of epithelial cell were observed. Basal plasma membrane in the epithelial cells was also wrinkled to promulgate into the cytoplasm to become basal infoldings producing canaliculi in basal labyrinth formation. There were many mitochondria scattered in these formations as well. On the bottom of the epithelial cell, basal lamina was attached and between basal lamina and muscle bundle was subepithelial space, which is connective tissue. Inside the space, tracheal and nerve cells were observed.  相似文献   

13.
BACKGROUND: The hydrophilic bile salt ursodeoxycholate (UDCA) inhibits injury by hydrophobic bile acids and is used to treat cholestatic liver diseases. Interestingly, hepatocyte cell death from bile acid-induced toxicity occurs more frequently from apoptosis than from necrosis. However, both processes appear to involve the mitochondrial membrane permeability transition (MPT). In this study, we determined the inhibitory effect of UDCA on deoxycholic acid (DCA)-induced MPT in isolated mitochondria by measuring changes in transmembrane potential (delta psi m) and production of reactive oxygen species (ROS). In addition, we examined the expression of apoptosis-associated proteins in mitochondria isolated from livers of bile acid-fed animals. MATERIALS AND METHODS: Adult male rats were maintained on standard diet supplemented with DCA and/or UDCA for 10 days. Mitochondria were isolated from livers by sucrose/percoll gradient centrifugation and MPT was measured using spectrophotometric and fluorimetric assays. delta psi m and ROS generation were determined by FACScan analysis. Cytoplasmic and mitochondrial protein abundance were determined by Western blot analysis. RESULTS: DCA increased mitochondrial swelling 25-fold over controls (p < 0.001); UDCA reduced the swelling by > 40% (p < 0.001). Similarly, UDCA inhibited DCA-mediated release of calcein-loaded mitochondria by 50% (p < 0.001). delta psi m was significantly decreased in mitochondria incubated with DCA but not with UDCA. delta psi m disruption was followed closely by increased superoxide anion and peroxides production (p < 0.01). Coincubation of mitochondria with UDCA significantly inhibited the changes associated with DCA (p < 0.05). In vivo, DCA feeding was associated with a 4.5-fold increase in mitochondria-associated Bax protein levels (p < 0.001); combination feeding with UDCA almost totally inhibited this increase (p < 0.001). CONCLUSION: UDCA significantly reduces DCA-induced disruption of delta psi m, ROS production, and Bax protein abundance in mitochondria, suggesting both short- and long-term mechanisms in preventing MPT. The results suggest a possible role for UDCA as a therapeutic agent in the treatment of both hepatic and nonhepatic diseases associated with high levels of apoptosis.  相似文献   

14.
Little is known about the effects of bile acids in relation to infectivity on the biological characteristics of Uronema marinum, a serious opportunistic parasite of farmed olive flounder Paralichthys olivaceus. In this study, we examined the effects of bile acids on the proliferation of U. marinum and on proteinase production in vitro. Proliferation of U, marinum was significantly enhanced by lithocholic acid (LCA) at 30 and 60 pmol, and by chenodeoxycholic acid (CDCA) at 0.06 pmol. In contrast, a significant decrease in proliferation was observed with cholic acid (CA) at 30 and 60 micromol, and with deoxycholic acid (DCA) at all amounts used. Proteinase production from live U. marinum was significantly increased by LCA, whereas CA significantly decreased proteinase production. CDCA and DCA had no effect on proteinase production. Although the types and concentrations of bile acids in the faeces of olive flounder are not known, the present results suggest that bile acids in the culturing water might influence the proliferation and production of proteinases in U. marinum, resulting in an increased possibility of scuticociliatosis in olive flounder farms.  相似文献   

15.
Kobayashi N  Ohtoyo M  Wada E  Kato Y  Mano N  Goto J 《Steroids》2005,70(4):285-294
A subset of lipophillic bile acids, including deoxycholic acid (DCA) and lithocholic acid (LCA), are thought to be biologically transformed into reactive intermediates forming covalently modified, "tissue-bound" bile acids that can exert several toxic effects. We have generated a single-chain Fv fragment (scFv) as a probe to monitor DCA residues anchored on proteins. DNA fragments encoding the variable heavy (V(H)) and light (V(L)) domains of a mouse antibody raised against a DCA hapten (Ab #88) were cloned by rapid amplification of cDNA 5'-ends. These sequences were combined via a common linker sequence coding (Gly(4)Ser)(3) to construct a single scFv gene with the gene segments in the following order: 5'-V(H)-linker-V(L)-3'. This construct was subcloned into an antibody-expression vector, pEXmide 5; soluble scFv protein was then expressed in the bacterial periplasm of the XLOLR Escherichia coli strain. In a competitive enzyme-linked immunosorbent assay using DCA-coated microtiter plates, the scFv provided a dose-response curve for free DCA ranging between 2 and 5000 pg/assay. The scFv reacts similarly with the l-lysine adduct of DCA (cross-reactivity, 72%), while bile acids having a modified DCA steroid skeleton were well-discriminated (cross-reactivity, <1%). This scFv could also monitor trace amounts of DCA residues anchored on a protein through DCA acyl adenylate reactions, the likely reactive intermediate. The present scFv may be a useful tool for trace characterization of tissue-bound bile acids; this usefulness may be significantly enhanced by fusion with signal-generating proteins, such as alkaline phosphatase or green fluorescent protein.  相似文献   

16.
Fine structure of the ion transporting epithelium of the neck organ in the brine shrimp (Artemia salina) nauplius is described. The neck organ is a dome-like gland situated atop the cephalothorax of the larva and is composed of 50 to 60 cuboidal epithelial cells. These cells possess many of the characteristics of salt-secretory cells from other tissues. They contain many mitochondria and exhibit a high degree of plasma membrane elaboration. This membrane amplification takes two forms; the apical plasmalemma is infolded into irregular loops, while the basal and lateral membranes penetrate the cytoplasm in the form of branching sinusoids. The labyrinth of tubular reticulum thus formed fills most of the cell volume. Mitochondria in the labyrinth are often in intimate contact with these tubular membranes and regular arrays of parallel mitochondria with constricted intervening sinusoids are often observed. Other organelles including Golgi complexes, multivesicular bodies, and rough endoplasmic reticulum are also numerous, particularly in the narrow rim of cytoplasm which lies between the apical infolds and the labyrinth. Yolk platelets and glycogen fields are conspicuous in the basal perinuclear regions of the cells.  相似文献   

17.
The development of epithelial cells of the uterine glands of ovariectomized sheep in response to estradiol-17 beta (E) and progesterone (P) was studied using light and electron microscopy. Animals that had been ovariectomized for six weeks were placed in one of three experimental treatment groups. Group I animals (untreated controls) received no steroid treatment. Group II animals (E alone) received one 4-cm E implant (E approximately 5-10 pg/ml) and their uteri were removed after 2, 4, or 6 days. Group III animals (E-primed, P-treated) received an E implant (E approximately 5-10 pg/ml) for 6 days and then were treated with six 13-cm P implants (P approximately 1.5-3 ng/ml), in the continued presence of E, for 2, 4 or 6 days. Six weeks after ovariectomy the epithelial cells of the uterine glands were low cuboidal and morphologically appeared to be synthetically inactive. Following 2 days of E treatment the epithelial cells had significantly increased in cell height, and protein-synthesizing organelles were well developed. Maturation of the secretory apparatus continued throughout E treatment. The Golgi complex and rough endoplasmic reticulum (RER) were abundant. Lysosomal-like granules and granules of varying electron density were present in the cytoplasm. The chronic administration of P to E-primed animals did not result in any further increase in cell height. Elongated mitochondria, a cup-shaped Golgi apparatus, extensive apical microvilli, and irregularly shaped membranous profiles in the supranuclear cytoplasm characterized these uterine epithelial cells. Lysosomal-like granules, small vesicles, and scattered patches of glycogen were seen in the cytoplasm. These data show that the uterine epithelial cells of the ovariectomized sheep undergo morphological alterations in protein-synthesizing organelles and apical specializations that depend on the presence of E and P.  相似文献   

18.
Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects.  相似文献   

19.
The pathogenesis of lithocholic acid (LCA-Na)-induced cholestasis involves a rapid accumulation of cholesterol in the bile canalicular membrane. Since microtubules play an important role in the intracellular transport of many materials, including cholesterol, the present study was undertaken to assess the extent to which they participate in the development of LCA-Na-induced cholestasis. Rats were pretreated with either colchicine (0.2 mumol/100 g body wt.) or saline solution 90 min before injection with LCA-Na (12 mumol/100 g body wt.). Colchicine, although not increasing bile flow by itself, significantly reduced the cholestasis caused by LCA-Na (57-32% reduction in bile flow) without affecting its metabolism into less toxic bile acids or its distribution in blood, liver or bile. Bile canalicular membranes isolated from animals treated with a combination of colchicine and LCA-Na contained less cholesterol than those treated with LCA-Na alone. However, membranes obtained from rats treated with colchicine alone contained much less cholesterol than did controls. It was found that the total amount of cholesterol accumulated within the bile canalicular membrane following LCA-Na treatment (LCA-Na + colchicine versus colchicine alone compared with LCA-Na versus controls) was unchanged by colchicine treatment. In view of these findings it is suggested that the total amount of cholesterol present within the bile canalicular membrane determines the extent of LCA-Na-induced cholestasis, LCA-Na probably moves cholesterol to the bile canalicular membrane via a microtubule independent pathway, and microtubules are unlikely to function in the transcellular transport of LCA-Na.  相似文献   

20.
The paratympanic organ is a specialized sensory organ of birds located in the medial wall of the tympanic cavity. It possesses a sensory epithelium formed by type II hair cells and supporting cells. The supporting cells are tall, narrow units that extend from the basement membrane to the free epithelial surface. They show a fine structure characterized by numerous mitochondria, a conspicuous Golgi complex and a well-developed RER. Moreover, some uncommon structures, probably formed by heaped RER cisternae, are frequently present in the cytoplasm. Adjacent supporting cells are connected by numerous and extensive gap junctions; moreover, small gap junctions between hair cell and supporting cells are to be found. The possible mechanical and metabolical functions of the paratympanic organ supporting cells are discussed. J. Morphol. 236:65–73, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号