首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by alpha-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp(-/-)) mice to examine the physiological role of AgRP. Agrp(-/-) mice are viable and exhibit normal locomotor activity, growth rates, body composition, and food intake. Additionally, Agrp(-/-) mice display normal responses to starvation, diet-induced obesity, and the administration of exogenous leptin or neuropeptide Y (NPY). In situ hybridization failed to detect altered CNS expression levels for proopiomelanocortin, Mc3r, Mc4r, or NPY mRNAs in Agrp(-/-) mice. As AgRP and the orexigenic peptide NPY are coexpressed in neurons of the arcuate nucleus, we generated AgRP and NPY double-knockout (Agrp(-/-);Npy(-/-)) mice to determine whether NPY or AgRP plays a compensatory role in Agrp(-/-) or NPY-deficient (Npy(-/-)) mice, respectively. Similarly to mice deficient in either AgRP or NPY, Agrp(-/-);Npy(-/-) mice suffer no obvious feeding or body weight deficits and maintain a normal response to starvation. Our results demonstrate that neither AgRP nor NPY is a critically required orexigenic factor, suggesting that other pathways capable of regulating energy homeostasis can compensate for the loss of both AgRP and NPY.  相似文献   

2.
Loss of function mutations in the receptor tyrosine kinase TrkB pathway resulted in hyperphagia and morbid obesity in human and rodents. Conversely, peripheral or central stimulation of TrkB by its natural ligands BDNF or NT4 reduced body weight and food intake in mice, supporting the idea that TrkB is a key anorexigenic signal downstream of the melanocortin-4 receptor (Mc4r) system. Here we show that in non-human primates TrkB agonists were anorexigenic when applied centrally, but surprisingly orexigenic, leading to gain in appetite, body weight, fat deposits and serum leptin levels, when given peripherally. The orexigenic and pro-obesity effects of peripherally administered TrkB agonists appear to be dose dependent, not associated with fluid retention nor with evidence of receptor down regulation. Our findings revealed that TrkB signaling exerts dual control on energy homeostasis in the primates that could be targeted for the treatment of either wasting disorders or obesity.  相似文献   

3.
Pleiotropic effects of melanocortin signaling were first described nearly 100 years ago when mice carrying the lethal yellow (A(y)) allele of the Agouti coat color gene were recognized to develop increased growth and adiposity. Work from our laboratory and others over the last several years has demonstrated that the non-pigmentary effects of A(y) are caused by ectopic expression of Agouti protein, a paracrine signaling molecule whose normal function is to inhibit signaling through the melanocortin 1 receptor (Mc1r), but which can mimic the effects of Agouti-related protein (Agrp), a homologous neuropeptide produced in the medial portion of the arcuate nucleus that acts as a potent antagonist of the Mc3r and Mc4r. Recently we have used the genetics of pigmentation as an in vivo screening system to analyze other mutations in the Agouti-melanocortin pathway, leading to the identification of Attractin (Atrn), a widely expressed type I transmembrane protein that serves as an accessory receptor for Agouti protein. Surprisingly, homologs of Atrn are found in fruitflies and nematodes, even though Agouti and/or Agouti-related protein are found only in vertebrates. Insight into this apparent paradox now comes from studies of different Atrn alleles, in which we find hyperactivity, abnormal myelination, and widespread CNS vacuolation. We suggest that the neurodegenerative phenotype reflects the ancestral function of Atrn to facilitate and/or maintain cell-cell interactions in the nervous system. Expression in neurectodermal cells during vertebrate evolution may have allowed Atrn to be recruited by the Agouti-melanocortin system to control coat color.  相似文献   

4.
5.
6.
Agouti: from mouse to man, from skin to fat   总被引:25,自引:0,他引:25  
The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. Its effect on pigmentation is achieved by antagonizing the binding of alpha-melanocyte stimulating hormone (alpha-MSH) to melanocortin 1 receptor (Mc1r), switching melanin synthesis from eumelanin (black/brown) to phaeomelanin (red/yellow). Dominant mutations in the non-coding region of mouse agouti cause yellow coat colour and ectopic expression also results in obesity, type 11 diabetes, increased somatic growth and tumourigenesis. At least some of these pleiotropic effects can be explained by antagonism of other members of the melanocortin receptor family by agouti protein. The yellow coat colour is the result of agouti chronically antagonizing the binding of alpha-MSH to Mc1r and the obese phenotype results from agouti protein antagonizing the binding of alpha-MSH to Mc3r and/or Mc4r. Despite the existence of a highly homologous agouti protein in humans, agouti signal protein (ASIP), its role has yet to be defined. However it is known that human ASIP is expressed at highest levels in adipose tissue where it may antagonize one of the melanocortin receptors. The conserved nature of the agouti protein combined with the diverse phenotypic effects of agouti mutations in mouse and the different expression patterns of human and mouse agouti, suggest ASIP may play a role in human energy homeostasis and possibly human pigmentation.  相似文献   

7.
8.
ABSTRACT

Pleiotropic effects of melanocortin signaling were first described nearly 100 years ago when mice carrying the lethal yellow (Ay) allele of the Agouti coat color gene were recognized to develop increased growth and adiposity. Work from our laboratory and others over the last several years has demonstrated that the non-pigmentary effects of A?y are caused by ectopic expression of Agouti protein, a paracrine signaling molecule whose normal function is to inhibit signaling through the melanocortin 1 receptor (Mc1r), but which can mimic the effects of Agouti-related protein (Agrp), a homologous neuropeptide produced in the medial portion of the arcuate nucleus that acts as a potent antagonist of the Mc3r and Mc4r. Recently we have used the genetics of pigmentation as an in vivo screening system to analyze other mutations in the Agouti–melanocortin pathway, leading to the identification of Attractin (Atrn), a widely expressed type I transmembrane protein that serves as an accessory receptor for Agouti protein. Surprisingly, homologs of Atrn are found in fruitflies and nematodes, even though Agouti and/or Agouti-related protein are found only in vertebrates. Insight into this apparent paradox now comes from studies of different Atrn alleles, in which we find hyperactivity, abnormal myelination, and widespread CNS vacuolation. We suggest that the neurodegenerative phenotype reflects the ancestral function of Atrn to facilitate and/or maintain cell–cell interactions in the nervous system. Expression in neurectodermal cells during vertebrate evolution may have allowed Atrn to be recruited by the Agouti–melanocortin system to control coat color.  相似文献   

9.
Melanocortin receptors are considered promising candidates for the treatment of behavioral and metabolic disorders ranging from obesity to anorexia and cachexia. These experiments examined the response of mice to peripheral injections of two compounds. PG932 is a derivative of SHU9119 which is non-selective antagonist of melanocortin-3 and melanocortin-4 receptors (Mc3r and Mc4r). PG946 is a derivative of a hybrid of alpha- and beta-MSH, and is a moderately selective Mc3r antagonist. SHU9119 increases food intake when administered intracerebroventricularly but is without effect when injected into the periphery. In contrast, PG932 was found to be highly effective at stimulating food intake when administered peripherally by intraperitoneal injection. The orexigenic effect of PG932 required functional Mc4r, suggesting that inhibition of this receptor is involved in the stimulation of food intake. PG946 did not significantly affect on feeding behavior. PG932 is thus a useful new compound for studies examining the regulation of appetite and energy balance, and may also prove useful for the treatment of cachectic conditions.  相似文献   

10.
Leptin and reproduction.   总被引:11,自引:0,他引:11  
  相似文献   

11.
12.
Phosphatidylinositol 3-OH-kinase (PI3K) and STAT3 are signal transduction molecules activated by leptin in brain areas controlling food intake. To investigate their role in leptin-mediated inhibition of hypothalamic neuropeptide Y (Npy) and agouti-related peptide (Agrp) gene expression, male Sprague-Dawley rats (n = 5/group) were either fed ad libitum or subjected to a 52-h fast. At 12-h intervals, the PI3K inhibitor LY-294002 (LY, 1 nmol) or vehicle was injected intracerebroventricularly (ICV) as a pretreatment, followed 1 h later by leptin (3 microg icv) or vehicle. Fasting increased hypothalamic Npy and Agrp mRNA levels (P < 0.05), and ICV leptin administration prevented this increase. As predicted, LY pretreatment blocked this inhibitory effect of leptin, such that Npy and Agrp levels in LY-leptin-treated animals were similar to fasted controls. By comparison, leptin-mediated activation of hypothalamic STAT3 signaling, as measured by induction of both phospho-STAT3 immunohistochemistry and suppressor of cytokine signaling-3 (Socs3) mRNA, was not significantly attenuated by ICV LY pretreatment. Because NPY/AgRP neurons project to the hypothalamic paraventricular nucleus (PVN), we next investigated whether leptin activation of PVN neurons is similarly PI3K dependent. Compared with vehicle, leptin increased the number of c-Fos positive cells within the parvocellular PVN (P = 0.001), and LY pretreatment attenuated this effect by 35% (P = 0.043). We conclude that leptin requires intact PI3K signaling both to inhibit hypothalamic Npy and Agrp gene expression and activate neurons within the PVN. In addition, these data suggest that leptin activation of STAT3 is insufficient to inhibit expression of Npy or Agrp in the absence of PI3K signaling.  相似文献   

13.
Neuropeptide Y(NPY) is widely expressed in the central nervous system and influences many physiological processes.It is located within the rat quantitative trait locus(QTL) for alcohol preference on chromosome 4.Alcohol-nonpreferring(NP) rats consume very little alcohol,but have significantly higher NPY expression in the brain than alcohol-preferring(P) rats.We capitalized on this phenotypic difference by creating an Npy knockout(KO) rat using the inbred NP background to evaluate NPY effects on alcohol consumption.Zinc finger nuclease(ZNF) technology was applied,resulting in a 26-bp deletion in the Npy gene.RT-PCR,Western blotting and immunohistochemistry confirmed the absence of Npy mRNA and protein in KO rats.Alcohol consumption was increased in Npy~(+/-) but not Npy~(-/-) rats,while Npy~(-/-) rats displayed significantly lower body weight when compared to Npy~(+/+) rats.In whole brain tissue,expression levels of Npy-related and other alcohol-associated genes,Npy1 r,Npy2r,Npy5 r,Agrp,Mc3 r,Mc4r,Crh and CrMr,were significantly greater in Npy~(-/-) rats,whereas Pome and Crhr2 expressions were highest in Npy~(+/-) rats.These findings suggest that the NPY-system works in close coordination with the melanocortin(MC) and corticotropin-releasing hormone(CRH) systems to modulate alcohol intake and body weight.  相似文献   

14.
Monogenic disorders of obesity and body fat distribution.   总被引:2,自引:0,他引:2  
Recently, great progress has been made towards understanding the molecular basis of body fat regulation. Identification of mutations in several genes in spontaneous monogenic animal models of obesity and development of transgenic models have indicated the physiological roles of many genes in the regulation of body fat distribution. In humans, mutations in leptin, leptin receptor, prohormone convertase 1 (PC1), pro-opiomelanocortin (POMC), melanocortin 4-receptor (MC4-R), and peroxisome proliferator-activated receptor (PPAR) gamma2 genes have been described in patients with severe obesity. Most of these obesity disorders exhibit a distinct phenotype with varying degrees of hypothalamic and pituitary dysfunction and a recessive inheritance, whereas MC4-R mutation has a nonsyndromic phenotype with dominant inheritance. These mutations suggest the critical role of central signaling systems composed of leptin/leptin receptor and alpha-melanocyte stimulating hormone/MC4-R in human energy homeostasis. Although the genetic basis of monogenic disorders of body fat distribution, such as congenital generalized lipodystrophy and familial partial lipodystrophy, Dunnigan variety, is still unknown, the genes for these have recently been localized to chromosomes 9q34 and 1q21-22, respectively. The advances in our knowledge of the phenotypic manifestations and underlying molecular mechanisms of genetic body fat disorders may lead to better treatment and prevention of obesity and other disorders of adipose tissue in the future.  相似文献   

15.
Agouti-related protein (Agrp), one of the two naturally occurring inverse agonists known to inhibit G protein-coupled receptor activity, regulates energy expenditure by decreasing basal and blocking agonist-promoted melanocortin receptor (MCR) signaling. Here we report that, in addition to its inverse agonistic activities, Agrp exhibits agonistic properties on the endocytosis pathway of melanocortin receptors. Sustained exposure of human embryonic kidney 293 cells to Agrp induced endocytosis of the MC3R or the MC4R. The extent and kinetics of Agrp-promoted MCR endocytosis were similar to the endocytosis induced by melanocortins. Using the bioluminescence resonance energy transfer technique, we further showed that after binding of Agrp both MCRs interacted with beta-arrestins. In line with this observation, in COS-7 cells co-expression of beta-arrestins enhanced Agrp-induced MCR endocytosis, whereas in human embryonic kidney 293 cells co-transfection of beta-arrestin-specific small interference RNAs diminished Agrp-promoted endocytosis. This new regulatory mechanism was likewise detectable in a cell line derived from murine hypothalamic neurons endogenously expressing MC4R, pointing to the physiological relevance of Agrp-promoted receptor endocytosis. In conclusion, we demonstrated that Agrp does not solely act by directly blocking MCR signaling but also by reducing the amount of MCR molecules accessible to melanocortins at the cell surface. This beta-arrestin-dependent mechanism reveals a new aspect of MCR signaling in particular and refines the concept of G protein-coupled receptor antagonism in general.  相似文献   

16.
Leptin   总被引:39,自引:0,他引:39  
Leptin is an adipocyte hormone that signals nutritional status to the central nervous system (CNS) and peripheral organs. Leptin is also synthetized in the placenta and in gastrointestinal tract, although its role in these tissues is not yet clear. Circulating concentrations of leptin exhibit pulsatility and circadian rhythmicity. The levels of plasma leptin vary directly with body mass index and percentage body fat, and leptin contributes to the regulation of body weight. Leptin plasma concentrations are also influenced by metabolic hormones, sex, and body energy requirements. Defects in the leptin signaling pathway result in obesity in animal models. Only a few obese humans have been identified with mutations in the leptin gene or in the leptin receptor; however, most cases of obesity in humans are associated with high leptin levels. Thus, in humans obesity may represent a state of leptin resistance. Minute-to-minute fluctuations in peripheral leptin concentrations influence the activity of the hypothalamic-pituitary-ovarian and hypothalamic-pituitary-adrenal axes, indicating that leptin may be a modulator of reproduction, stress-related endocrine function, and behavior. This suggests potential roles for leptin or its antagonists in the diagnosis, pathophysiology and treatment of several human diseases.  相似文献   

17.
The wealth of information on the genetics of pigmentation and the clear fitness consequences of many pigmentation phenotypes provide an opportunity to study the molecular basis of an ecologically important trait. The melanocortin-1 receptor (Mc1r) is responsible for intraspecific color variation in mammals and birds. Here, we study the molecular evolution of Mc1r and investigate its role in adaptive intraspecific color differences in reptiles. We sequenced the complete Mc1r locus in seven phylogenetically diverse squamate species with melanic or blanched forms associated with different colored substrates or thermal environments. We found that patterns of amino acid substitution across different regions of the receptor are similar to the patterns seen in mammals, suggesting comparable levels of constraint and probably a conserved function for Mc1r in mammals and reptiles. We also found high levels of silent-site heterozygosity in all species, consistent with a high mutation rate or large long-term effective population size. Mc1r polymorphisms were strongly associated with color differences in Holbrookia maculata and Aspidoscelis inornata. In A. inornata, several observations suggest that Mc1r mutations may contribute to differences in color: (1) a strong association is observed between one Mc1r amino acid substitution and dorsal color; (2) no significant population structure was detected among individuals from these populations at the mitochondrial ND4 gene; (3) the distribution of allele frequencies at Mc1r deviates from neutral expectations; and (4) patterns of linkage disequilibrium at Mc1r are consistent with recent selection. This study provides comparative data on a nuclear gene in reptiles and highlights the utility of a candidate-gene approach for understanding the evolution of genes involved in vertebrate adaptation.  相似文献   

18.
Mutations in the melanocortin-4 receptor (MC4R) are associated with early-onset obesity in humans. Furthermore, a null Mc4r allele in mice leads to severe obesity due to hyperphagia and decreased energy expenditure. As part of independent N-ethyl- N-nitrosourea (ENU) mutagenesis screens, two obesity mutants, Fatboy and Southbeach, were isolated. Mapping revealed linkage to the melanocortin-4 receptor (Mc4r) and sequencing found single amino acid changes in Mc4r for each line. Expression of the mutant receptors in HEK 293 cells revealed defects in receptor signaling. The mutated Fatboy receptor (I194T) shows an increase in the effective concentration necessary for 50% of maximal signaling (EC50) when stimulated with α-MSH. Based on competitive binding, I194T is expressed on the cell surface at lower levels than the nonmutated receptor. In contrast, Southbeach (L300P) displays minimal receptor signaling when stimulated with the natural ligand α-MSH or the synthetic agonist NDP-α-MSH. Cell surface binding is absent, which usually indicates a lack of cell surface expression. However, antibody binding to Flag-tagged receptors by flow cytometry analysis and immunofluorescence demonstrates that L300P is translocated to the plasma membrane at a level comparable to the wild-type receptor. These results indicate a correlation with remaining receptor activity and the severity of the obesity in the mice homozygous for the mutations. Southbeach has less receptor activity and becomes more obese. These mutants will serve as good models for the variability in phenotype in humans carrying mutations in the MC4R gene.  相似文献   

19.
Despite high leptin levels, most obese humans and rodents lack responsiveness to its appetite-suppressing effects. We demonstrate that leptin modulates NPY/AgRP and alpha-MSH secretion from the ARH of lean mice. High-fat diet-induced obese (DIO) mice have normal ObRb levels and increased SOCS-3 levels, but leptin fails to modulate peptide secretion and any element of the leptin signaling cascade. Despite this leptin resistance, the melanocortin system downstream of the ARH in DIO mice is over-responsive to melanocortin agonists, probably due to upregulation of MC4R. Lastly, we show that by decreasing the fat content of the mouse's diet, leptin responsiveness of NPY/AgRP and POMC neurons recovered simultaneously, with mice regaining normal leptin sensitivity and glycemic control. These results highlight the physiological importance of leptin sensing in the melanocortin circuits and show that their loss of leptin sensing likely contributes to the pathology of leptin resistance.  相似文献   

20.
The melanocortin 1 receptor (Mc1r) plays a central role in cutaneous biology, but is expressed at very low levels by a small fraction of cells in the skin. In humans, loss-of-function MC1R mutations cause fair skin, freckling, red hair, and increased predisposition to melanoma; in mice, Mc1r loss-of-function is responsible for the recessive yellow mutation, associated with pheomelanic hair and a decreased number of epidermal melanocytes. To better understand how Mc1r signaling affects different cutaneous phenotypes, we examined large-scale patterns of gene expression in different skin components (whole epidermal sheets, basal epidermal cells and whole skins) of neonatal (P2.5) normal and recessive yellow mice, starting with a 26K mouse cDNA microarray. From c. 17 000 genes whose levels could be accurately measured in neonatal skin, we identified 883, 2097 and 552 genes that were uniquely expressed in the suprabasal epidermis, basal epidermis and dermis, respectively; specific biologic roles could be assigned for each class. Comparison of normal and recessive yellow mice revealed 69 differentially expressed genes, of which the majority had not been previously implicated in Mc1r signaling. Surprisingly, many of the Mc1r-dependent genes are expressed in cells other than melanocytes, even though Mc1r expression in the skin is confined almost exclusively to epidermal melanocytes. These results reveal new targets for Mc1r signaling, and point to a previously unappreciated role for a Mc1r-dependent paracrine effect of melanocytes on other components of the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号