首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY: Microarray data are generated in complex experiments and frequently compromised by a variety of systematic errors. Subsequent data normalization aims to correct these errors. Although several normalization methods have recently been proposed, they frequently fail to account for the variability of systematic errors within and between microarray experiments. However, optimal adjustment of normalization procedures to the underlying data structure is crucial for the efficiency of normalization. To overcome this restriction of current methods, we have developed two normalization schemes based on iterative local regression combined with model selection. The schemes have been demonstrated to improve considerably the quality of normalization. They are implemented in a freely available R package. Additionally, functions for visualization and detection of systematic errors in microarray data have been incorporated in the software package. A graphical user interface is also available. AVAILABILITY: The R package can be downloaded from http://itb.biologie.hu-berlin.de/~futschik/software/R/OLIN. It underlies the GPL version 2. CONTACT: m.futschik@biologie.hu-berlin.de SUPPLEMENTARY INFORMATION: Further information about the methods used in the OLIN software package can be found at http://itb.biologie.hu-berlin.de/~futschik/software/R/OLIN.  相似文献   

2.
3.
In this study we present two novel normalization schemes for cDNA microarrays. They are based on iterative local regression and optimization of model parameters by generalized cross-validation. Permutation tests assessing the efficiency of normalization demonstrated that the proposed schemes have an improved ability to remove systematic errors and to reduce variability in microarray data. The analysis also reveals that without parameter optimization local regression is frequently insufficient to remove systematic errors in microarray data.  相似文献   

4.
SUMMARY: We present a web server for Diagnosis and Normalization of MicroArray Data (DNMAD). DNMAD includes several common data transformations such as spatial and global robust local regression or multiple slide normalization, and allows for detecting several kinds of errors that result from the manipulation and the image analysis of the arrays. This tool offers a user-friendly interface, and is completely integrated within the Gene Expression Pattern Analysis Suite (GEPAS). AVAILABILITY: The tool is accessible on-line at http://dnmad.bioinfo.cnio.es.  相似文献   

5.

Background

Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. This novel technique helps us to understand gene regulation as well as gene by gene interactions more systematically. In the microarray experiment, however, many undesirable systematic variations are observed. Even in replicated experiment, some variations are commonly observed. Normalization is the process of removing some sources of variation which affect the measured gene expression levels. Although a number of normalization methods have been proposed, it has been difficult to decide which methods perform best. Normalization plays an important role in the earlier stage of microarray data analysis. The subsequent analysis results are highly dependent on normalization.

Results

In this paper, we use the variability among the replicated slides to compare performance of normalization methods. We also compare normalization methods with regard to bias and mean square error using simulated data.

Conclusions

Our results show that intensity-dependent normalization often performs better than global normalization methods, and that linear and nonlinear normalization methods perform similarly. These conclusions are based on analysis of 36 cDNA microarrays of 3,840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells. Simulation studies confirm our findings.
  相似文献   

6.
New normalization methods for cDNA microarray data   总被引:7,自引:0,他引:7  
MOTIVATION: The focus of this paper is on two new normalization methods for cDNA microarrays. After the image analysis has been performed on a microarray and before differentially expressed genes can be detected, some form of normalization must be applied to the microarrays. Normalization removes biases towards one or other of the fluorescent dyes used to label each mRNA sample allowing for proper evaluation of differential gene expression. RESULTS: The two normalization methods that we present here build on previously described non-linear normalization techniques. We extend these techniques by firstly introducing a normalization method that deals with smooth spatial trends in intensity across microarrays, an important issue that must be dealt with. Secondly we deal with normalization of a new type of cDNA microarray experiment that is coming into prevalence, the small scale specialty or 'boutique' array, where large proportions of the genes on the microarrays are expected to be highly differentially expressed. AVAILABILITY: The normalization methods described in this paper are available via http://www.pi.csiro.au/gena/ in a software suite called tRMA: tools for R Microarray Analysis upon request of the authors. Images and data used in this paper are also available via the same link.  相似文献   

7.
Schageman JJ  Basit M  Gallardo TD  Garner HR  Shohet RV 《BioTechniques》2002,32(2):338-40, 342, 344
The comprehensive analysis and visualization of data extracted from cDNA microarrays can be a time-consuming and error-prone process that becomes increasingly tedious with increased number of gene elements on a particular microarray. With the increasingly large number of gene elements on today's microarrays, analysis tools must be developed to meet this challenge. Here, we present MarC-V, a Microsoft Excel spreadsheet tool with Visual Basic macros to automate much of the visualization and calculation involved in the analysis process while providing the familiarity and flexibility of Excel. Automated features of this tool include (i) lower-bound thresholding, (ii) data normalization, (iii) generation of ratio frequency distribution plots, (iv) generation of scatter plots color-coded by expression level, (v) ratio scoring based on intensity measurements, (vi) filtering of data based on expression level or specific gene interests, and (vii) exporting data for subsequent multi-array analysis. MarC-V also has an importing function included for GenePix results (GPR) raw data files.  相似文献   

8.
Ma S  Kosorok MR  Huang J  Xie H  Manzella L  Soares MB 《Biometrics》2006,62(2):555-561
Microarray technology allows the monitoring of expression levels of thousands of genes simultaneously. A semiparametric location and scale model is proposed to model gene expression levels for normalization and significance analysis purposes. Robust estimation based on weighted least absolute deviation regression and significance analysis based on the weighted bootstrap are investigated. The proposed approach naturally combines normalization and significance analysis, and incorporates the variations due to normalization into the significance analysis properly. A small simulation study is used to compare finite sample performance of the proposed approach with alternatives. We also demonstrate the proposed method with a real dataset.  相似文献   

9.
Transformation and normalization of oligonucleotide microarray data   总被引:3,自引:0,他引:3  
MOTIVATION: Most methods of analyzing microarray data or doing power calculations have an underlying assumption of constant variance across all levels of gene expression. The most common transformation, the logarithm, results in data that have constant variance at high levels but not at low levels. Rocke and Durbin showed that data from spotted arrays fit a two-component model and Durbin, Hardin, Hawkins, and Rocke, Huber et al. and Munson provided a transformation that stabilizes the variance as well as symmetrizes and normalizes the error structure. We wish to evaluate the applicability of this transformation to the error structure of GeneChip microarrays. RESULTS: We demonstrate in an example study a simple way to use the two-component model of Rocke and Durbin and the data transformation of Durbin, Hardin, Hawkins and Rocke, Huber et al. and Munson on Affymetrix GeneChip data. In addition we provide a method for normalization of Affymetrix GeneChips simultaneous with the determination of the transformation, producing a data set without chip or slide effects but with constant variance and with symmetric errors. This transformation/normalization process can be thought of as a machine calibration in that it requires a few biologically constant replicates of one sample to determine the constant needed to specify the transformation and normalize. It is hypothesized that this constant needs to be found only once for a given technology in a lab, perhaps with periodic updates. It does not require extensive replication in each study. Furthermore, the variance of the transformed pilot data can be used to do power calculations using standard power analysis programs. AVAILABILITY: SPLUS code for the transformation/normalization for four replicates is available from the first author upon request. A program written in C is available from the last author.  相似文献   

10.
ArrayNorm: comprehensive normalization and analysis of microarray data   总被引:2,自引:0,他引:2  
SUMMARY: ArrayNorm is a user-friendly, versatile and platform-independent Java application for the visualization, normalization and analysis of two-color microarray data. A variety of normalization options were implemented to remove the systematic and random errors in the data, taking into account the experimental design and the particularities of every slide. In addition, ArrayNorm provides a module for statistical identification of genes with significant changes in expression. AVAILABILITY: The package is freely available for academic and non-profit institutions from http://genome.tugraz.at  相似文献   

11.
DRAGON View: information visualization for annotated microarray data   总被引:4,自引:0,他引:4  
The DRAGON View information visualization tools aid in the comprehensive analysis of large-scale gene expression data that has been annotated with biologically relevant information through the generation of three types of complementary graphical outputs.  相似文献   

12.

Background  

Analysis of DNA microarray data usually begins with a normalization step where intensities of different arrays are adjusted to the same scale so that the intensity levels from different arrays can be compared with one other. Both simple total array intensity-based as well as more complex "local intensity level" dependent normalization methods have been developed, some of which are widely used. Much less developed methods for microarray data analysis include those that bypass the normalization step and therefore yield results that are not confounded by potential normalization errors.  相似文献   

13.
Optimized LOWESS normalization parameter selection for DNA microarray data   总被引:1,自引:0,他引:1  

Background  

Microarray data normalization is an important step for obtaining data that are reliable and usable for subsequent analysis. One of the most commonly utilized normalization techniques is the locally weighted scatterplot smoothing (LOWESS) algorithm. However, a much overlooked concern with the LOWESS normalization strategy deals with choosing the appropriate parameters. Parameters are usually chosen arbitrarily, which may reduce the efficiency of the normalization and result in non-optimally normalized data. Thus, there is a need to explore LOWESS parameter selection in greater detail.  相似文献   

14.
Normalization of expression levels applied to microarray data can help in reducing measurement error. Different methods, including cyclic loess, quantile normalization and median or mean normalization, have been utilized to normalize microarray data. Although there is considerable literature regarding normalization techniques for mRNA microarray data, there are no publications comparing normalization techniques for microRNA (miRNA) microarray data, which are subject to similar sources of measurement error. In this paper, we compare the performance of cyclic loess, quantile normalization, median normalization and no normalization for a single-color microRNA microarray dataset. We show that the quantile normalization method works best in reducing differences in miRNA expression values for replicate tissue samples. By showing that the total mean squared error are lowest across almost all 36 investigated tissue samples, we are assured that the bias correction provided by quantile normalization is not outweighed by additional error variance that can arise from a more complex normalization method. Furthermore, we show that quantile normalization does not achieve these results by compression of scale.  相似文献   

15.

Background  

With the development of DNA hybridization microarray technologies, nowadays it is possible to simultaneously assess the expression levels of thousands to tens of thousands of genes. Quantitative comparison of microarrays uncovers distinct patterns of gene expression, which define different cellular phenotypes or cellular responses to drugs. Due to technical biases, normalization of the intensity levels is a pre-requisite to performing further statistical analyses. Therefore, choosing a suitable approach for normalization can be critical, deserving judicious consideration.  相似文献   

16.
Java Treeview--extensible visualization of microarray data   总被引:32,自引:0,他引:32  
Open source software encourages innovation by allowing users to extend the functionality of existing applications. Treeview is a popular application for the visualization of microarray data, but is closed-source and platform-specific, which limits both its current utility and suitability as a platform for further development. Java Treeview is an open-source, cross-platform rewrite that handles very large datasets well, and supports extensions to the file format that allow the results of additional analysis to be visualized and compared. The combination of a general file format and open source makes Java Treeview an attractive choice for solving a class of visualization problems. An applet version is also available that can be used on any website with no special server-side setup.  相似文献   

17.
MOTIVATION: The goal of the study is to obtain genetic information from exfoliated colonocytes in the fecal stream rather than directly from mucosa cells within the colon. The latter is obtained through invasive procedures. The difficulties encountered by this procedure are that certain probe information may be compromised due to partially degraded mRNA. Proper normalization is essential to obtaining useful information from these fecal array data. RESULTS: We propose a new two-stage semiparametric normalization method motivated by the features observed in fecal microarray data. A location-scale transformation and a robust inclusion step were used to roughly align arrays within the same treatment. A non-parametric estimated non-linear transformation was then used to remove the potential intensity-based biases. We compared the performance of the new method in analyzing a fecal microarray dataset with those achieved by two existing normalization approaches: global median transformation and quantile normalization. The new method favorably compared with the global median and quantile normalization methods. AVAILABILITY: The R codes implementing the two-stage method may be obtained from the corresponding author.  相似文献   

18.
SUMMARY: We have created a software tool, SNPTools, for analysis and visualization of microarray data, mainly SNP array data. The software can analyse and find differences in intensity levels between groups of arrays and identify segments of SNPs (genes, clones), where the intensity levels differ significantly between the groups. In addition, SNPTools can show jointly loss-of-heterozygosity (LOH) data (derived from genotypes) and intensity data for paired samples of tumour and normal arrays. The output graphs can be manipulated in various ways to modify and adjust the layout. A wizard allows options and parameters to be changed easily and graphs replotted. All output can be saved in various formats, and also re-opened in SNPTools for further analysis. For explorative use, SNPTools allows various genome information to be loaded onto the graphs. AVAILABILITY: The software, example data sets and tutorials are freely available from http://www.birc.au.dk/snptools  相似文献   

19.

Background

When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be browsed. We set out to create a CGI application containing many of the features of some of the existing standalone software for the visualization of clustered microarray data.

Results

We present GeneXplorer, a web application for interactive microarray data visualization and analysis in a web environment. GeneXplorer allows users to browse a microarray dataset in an intuitive fashion. It provides simple access to microarray data over the Internet and uses only HTML and JavaScript to display graphic and annotation information. It provides radar and zoom views of the data, allows display of the nearest neighbors to a gene expression vector based on their Pearson correlations and provides the ability to search gene annotation fields.

Conclusions

The software is released under the permissive MIT Open Source license, and the complete documentation and the entire source code are freely available for download from CPAN http://search.cpan.org/dist/Microarray-GeneXplorer/.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号