首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Three DNA fragments, trs1, 2 and 3, were isolated from the Trichoderma reesei genome on the basis of their ability to promote autonomous replication of plasmids in Saccharomyces cerevisiae. Each trs element bound specifically to the isolated T. reesei nuclear matrix in vitro, and two of them bound in vivo, indicating that they are matrix attachment regions (MARs). A similar sequence previously isolated from Aspergillus nidulans (ans1) was also shown to bind specifically to the T. reesei nuclear matrix in vitro. The T. reesei MARs are AT-rich sequences containing 70%, 86% and 73% A+T over 2.9, 0.8 and 3.7?kb, respectively for trs1, 2 and 3. They exhibited no significant sequence homology, but were shown to contain a number of sequence motifs that occur frequently in many MARs identified in other eukaryotes. However, these motifs occurred as frequently in the trs elements as in randomly generated sequences with the same A+T content. trs1 and 3 were shown to be present as single copies in the T. reesei genome. The presence of the trs elements in transforming plasmids enhanced the frequency of integrative transformation of T. reesei up to five fold over plasmids without a trs. No evidence was obtained to suggest that the trs elements promoted efficient replication of plasmids in T. reseei. A mechanism for the enhancement of transformation frequency by the trs elements is proposed.  相似文献   

2.
A third xylanase (Xyn III) from Trichoderma reesei PC-3–7 was purified to electrophoretic homogeneity by gel filtration and ion-exchange chromatographies. The enzyme had a molecular mass of 32 kDa, and its isoelectric point was 9.1. The pH optimum of Xyn III was 6.0, similar to that of Xyn II, another basic xylanase of  T. reesei. The purified Xyn III showed high activity with birchwood xylan but no activity with cellulose and aryl glycoside. The hydrolysis of birchwood xylan by Xyn III produced mainly xylobiose, xylotriose and other xylooligosaccharides. The amino acid sequences of the N-terminus and internal peptides of Xyn III exhibited high homology with the family F xylanases, showing that they were distinct from those of Xyn I and Xyn II of  T. reesei, which belong to family G. These results reveal that Xyn III is a new specific endoxylanase, differing from Xyn I and Xyn II in  T. reesei. It is noteworthy that this novel xylanase was induced only by cellulosic substrates and l-sorbose but not by xylan and its derivarives. Furthermore,  T. reesei PC-3-7 produced Xyn III in quantity when grown on Avicel or lactose as a carbon source, while  T. reesei QM9414 produced little or no Xyn III. Received: 7 November 1997 / Received last revision: 2 February 1988 / Accepted: 23 February 1998  相似文献   

3.
The gene pdi1 encoding protein disulphide isomerase was isolated from the filamentous fungus Trichoderma reesei by degenerate PCR based on a consensus PDI active-site sequence. It was shown that the Trichoderma pdi1 cDNA is able to complement a yeast mutant with a disrupted PDI1 gene. The putative T. reesei PD1I protein has a predicted 20-amino acid N-terminal signal sequence and the C-terminal fungal consensus ER retention signal HDEL. The mature protein shows strong conservation relative to other fungal protein disulphide isomerases. The T. reesei pdi1 promoter has two possible unfolded protein response (UPR) elements and it was shown by treatments with dithiothreitol and tunicamycin that the gene is under the control of the UPR pathway. Expression of a heterologous protein, an IgG antibody Fab fragment, in Trichoderma increases pdi1 expression, probably by inducing the UPR. The level of T. reesei pdi1 mRNA is also regulated by the carbon source, being lowest in glucose-containing media and highest on carbon sources that induce the genes encoding extracellular enzymes. The mechanism of this regulation was studied by examining pdi1 mRNA levels under conditions where the extracellular enzymes are induced by sophorose, as well as in the strain RutC-30, which is mutant for the glucose repressor gene cre1. The results suggest that neither sophorose induction nor glucose repression by the CREI protein affect the pdi1 promoter directly. Received: 4 May 1998 / Accepted: 23 April 1999  相似文献   

4.
The complete nucleotide sequence of pER371, a native plasmid in Streptococcus thermophilus ST137, was determined. A putative open reading frame coding for a replication protein, Rep371, was identified. A characteristic promoter sequence and ribosome-binding site were found upstream of rep371. Rep371 (247 amino acid residues) does not show homology with RepA and RepS of the small S. thermophilus cryptic plasmids pST1-No.29 and pST1 respectively. The plus-origin sequence and Rep371 are highly homologous to the corresponding elements of the Staphylococcus aureus plasmids pC194 and pSK89. A novel 140-nucleotide palindromic minus-origin sequence, which is structurally similar but does not show sequence homology to the palA region of pC194, was identified in pER371. A palindromic sequence capable of forming a putative hairpin structure was identified and subsequently recognized as being highly conserved among several lactococcal rolling-circle plasmids. Cloning vectors derived from pER371 should provide valuable gene-delivery vehicles for the genetic engineering of lactic acid bacteria. Received: 25 November 1997 / Received last revision: 13 April 1998 / Accepted: 19 April 1998  相似文献   

5.
The transposable element IS801, isolated from plasmid pMMC7105 of Pseudomonas syringae pv. phaseolicola, transposes in Escherichia coli to plasmid targets, expressing a relatively relaxed target specificity. The target sequences are tetramers with homology with the left terminus (GAAC) of the transposing unit, the alternative targets being GAAC, GGAC, CAAG, and CGAC. In the areas flanking IS801 in 13 different locations, no similarities other than the target tetramer were observed. The transposase is physically and functionally separable from the transposing unit since transposition of constructs carrying marker genes occurs with the transposase expressed in trans. The IS801 transposase shows amino acid sequence homology to the transposases of the E. coli elements IS91 and IS1294. These tranposases contain conserved amino acid motifs found in the replicases of certain plasmids that replicate as rolling circles. Received: 18 March 1998 / Accepted: 15 August 1998  相似文献   

6.
A transposable element, Flipper, was isolated from the phytopathogenic fungus Botrytis cinerea. The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. The Flipper sequence is 1842 bp long with perfect inverted terminal repeats (ITRs) of 48 bp and an open reading frame (ORF) of 533 amino acids, potentially encoding for a transposase; the element is flanked by the dinucleotide TA. The encoded protein is very similar to the putative transposases of three elements from other phytopathogenic fungi, Fot1 from Fusarium oxysporum, and Pot2 and MGR586 from Magnaporthe grisea. The number of Flipper elements in strains of B. cinerea varied from 0 to 20 copies per genome. Analysis of the descendants of one cross showed that the segregation ratio of Flipper elements was 2:2 and that the copies were not linked. Received: 4 December 1996 / Accepted: 21 January 1997  相似文献   

7.
A cbh2 cDNA encoding Trichoderma reesei QM9414 cellobiohydrolase II, located on the expression vector whose copy number is controlled by the level of gentamicin, was successfully expressed under the control of a human cytomegalovirus promoter in the fission yeast, Schizosaccharomyces pombe. The 24-amino-acid leader peptide of the cbh2 gene was recognized by the yeast, enabling the efficient secretion of the heterologous cellobiohydrolase. The transformed S. pombe strain produced over 115 μg cellobiohydrolase proteins/ml rich medium supplemented with malt extract and 100 μg/ml gentamicin. The molecular masses of the recombinant cellobiohydrolases, secreted as two molecular species, were estimated to be 70 kDa and 72 kDa by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). Deglycosylation treatments revealed that the recombinant enzymes were overglycosylated and scarcely susceptible to α-mannosidase. The recombinant enzymes showed no carboxymethylcellulase activity, but showed similar characteristics to those of a native enzyme purified from T. reesei in their optimum pH and temperature, pH and temperature stabilities, and V max values toward phosphoric-acid-swollen cellulose as substrate, except that their K m values were about fourfold higher than that of the native enzyme. Received: 4 August 1997 / Received revision: 13 October 1997 / Accepted: 31 October 1997  相似文献   

8.
Several matrix-attachment regions (MARs) from animals have been shown to block interactions between an enhancer and promoter when situated between the two. Since a similar function for plant MARs has not been discerned, we tested the Zea mays ADH1 5′ MAR, Nicotiana tabacum Rb7 3′ MAR and a transformation booster sequence (TBS) MAR from Petunia hybrida for their ability to impede enhancer–promoter interactions in Arabidopsis thaliana. Stable transgenic lines containing vectors in which one of the three MAR elements or a 4 kb control sequence were interposed between the cauliflower mosaic virus 35S enhancer and a flower-specific AGAMOUS second intron-derived promoter (AGIP)::β-glucuronidase (GUS) fusion were assayed for GUS expression in vegetative tissues. We demonstrate that the TBS MAR element, but not the ADH1 or Rb7 MARs, is able to block interactions between the 35S enhancer and AGIP without compromising the function of either with elements from which they are not insulated. Accession numbers: TBS from Petunia hybrida cultivar V26, GenBank accession number EU864306.  相似文献   

9.
10.
Functional analysis of BnMAR element in transgenic tobacco plants   总被引:1,自引:0,他引:1  
Scaffold/matrix attachment regions (S/MARs) are defined as genomic DNA sequences, located at the physical boundaries of chromatin loops. Previous reports suggest that S/MARs elements may increase and stabilize the expression of transgene. In this study, DNA sequence with MAR characteristics has been isolated from B. napus . The BnMARs sequence was used to flank the CaMV35S-GUS-NOS expression cassette within the T-DNA of the plant expression vector pPZP212. These constructs were introduced into tobacco plants, respectively and the GUS reporter gene expression was investigated in stably transformed plants. When the forward BnMARs sequence was inserted into the upstream of CaMV35S promoter, the average GUS activities were much higher than those without BnMARs in transgenic tobacco. The GUS expression of M(+)35S:GUS, M(+)35S:GUSM(+) and M(+)35S:GUSM(−) constructs increased average 1.0-fold, with or without BnMARs located downstream of NOS. The GUS expression would not be affected when reverse BnMARs sequence inserted whether upstream of CaMV35S promoter or downstream of NOS. The GUS expression was affected a little when reverse BnMARs sequence was inserted the downstream of NOS and BnMARs could not act by serving as of promoter. The results showed that the presence of forward BnMARs sequence does have an obvious impact on enhancing downstream gene expression and its effect is unidirectional.  相似文献   

11.
12.
A gene library from the thermophilic eubacterium Rhodothermus marinus, strain ITI 378, was constructed in pUC18 and transformed into Escherichia coli. Of 5400 transformants, 3 were active on carboxymethylcellulose. Three plasmids conferring cellulase activity were purified and were all found to contain the same cellulase gene, celA. The open reading frame for the celA gene is 780 base pairs and encodes a protein of 260 amino acids with a calculated molecular mass of 28.8 kDa. The amino acid sequence shows homology with cellulases in glycosyl hydrolase family 12. The celA gene was overexpressed in E. coli when the pET23, T7 phage RNA polymerase system was used. The enzyme showed activity on carboxymethylcellulose and lichenan, but not on birch xylan or laminarin. The expressed enzyme had six terminal histidine residues and was purified by using a nickel nitrilotriacetate column. The enzyme had a pH optimum of 6–7 and its highest measured initial activity at 100 °C. The heat stability of the enzyme was increased by removal of the histidine residues. It then retained 75% of its activity after 8 h at 90 °C. Received: 5 August 1997 / Received revision: 6 November 1997 / Accepted: 7 November 1997  相似文献   

13.
Mechanisms regulating post-secretory limited proteolysis, carried out by the acid protease from Trichoderma reesei, were studied by following the release of α-galactosidase and multiple forms of cellobiohydrolase from this species. Both the rate of the proteolysis and the mode of action of the protease were affected by the pH of the culture medium, and only weakly depended on the amount of the enzyme. At pH between 2.7 and 3.5 the proteolytic reaction was limited, while at lower pH proteins were completely digested. Proteolysis depended on the degree of glycosylation of secreted enzymes. Inhibition of post-secretory deglycosylation decreased the rate of limited proteolysis in the culture medium in the course of fungal growth. Glucose and cellobiose, the main products of cellulose degradation carried out by the fungal cellulolytic complex, inhibited the proteolysis of the cellobiohydrolase in a concentration-dependent manner. A 32-kDa aspartic protease (EC 3.4.23.18) secreted by T. reesei was purified to homogeneity. The acid protease cleaved α-galactosidase and cellobiohydrolase into the same proteolytic fragments that had been isolated from the culture medium. Received: 4 December 1998 / Received revision: 22 February 1999 / Accepted: 5 March 1999  相似文献   

14.
15.
16.
 A genomic DNA fragment from Triticum tauschii, the donor of the wheat D genome, contains a starch branching enzyme-I (SBE-I) gene spread over 6.5 kb. This gene (designated wSBE I-D4) encodes an amino acid sequence identical to that determined for the N-terminus of SBE-I from the hexaploid wheat (T. aestivum) endosperm. Cognate cDNA sequences for wSBE I-D4 were isolated from hexaploid wheat by hybridisation screening from an endosperm library and also by PCR. A contiguous sequence (D4 cDNA) was assembled from the sequence of five overlapping partial cDNAs which spanned wSBE I-D4. D4 cDNA encodes a mature polypeptide of 87 kDa that shows 90% identity to SBE-I amino acid sequences from rice and maize and contains all the residues considered essential for activity. D4 mRNA has been detected only in the endosperm and is at a maximum concentration mid-way through grain development. The wSBE I-D4 gene consists of 14 exons, similar to the structure for the equivalent gene in rice; the rice gene has a strikingly longer intron 2. The 3′ end of wSBE I-D4 was used to show that the gene is located on group 7 chromosomes. The sequence upstream of wSBE I-D4 was analysed with respect to conserved motifs. Received: 14 January 1998 / Accepted: 14 July 1998  相似文献   

17.
Nuclear matrix attachment regions (MARs) are known to bind specifically to the nuclear scaffold and are thought to influence expression of the transgenes. In our previous studies, a new deoxyribonucleic acid fragment isolated from Dunaliella salina could bind to the nuclear matrix in vitro and had the typical characteristics of MARs. In this study, to investigate effects of MARs on expression of transgenes in the stably transformed cells of D. salina, expression vectors with and without MARs, which contained chloramphenicol acetyltransferase (CAT) reporter gene driven by D. salina ribulose 1,5-bisphosphate carboxylase/oxygenase promoter, were constructed and delivered, respectively, into cells of D. salina by electroporation. Twenty stably transformed colonies of D. salina were randomly picked out, and CAT gene expression was assayed. The results showed that the CAT enzyme of the colonies of D. salina transformed with the expression vector containing MARs averaged out about 4.5-fold higher than those without MARs, while the transgene expression variation among individuals of transformants decreased threefold. The CAT enzyme in the stably transformed lines was not significantly proportional to the gene copy numbers, suggesting that the effects of MARs on transgene expression may not be through increasing the transgene copy numbers.  相似文献   

18.
In this study, the xyn3 gene from the filamentous mesophilic fungus Trichoderma reesei (Hypocrea jecorina) PC-3-7 was cloned and sequenced. Analysis of the deduced amino acid sequence of XYN III revealed considerable homology with xylanases belonging to glycoside hydrolase family 10. These results show that XYN III is distinguishable from XYN I and XYN II, two other T. reesei xylanases that belong to the glycosidase family 11. When xyn3 was expressed in Escherichia coli, significant activity was observed in the cell-free extract, and higher activity (13.2 U/ml medium) was recovered from the inclusion bodies in the cell debris. The sequence of the 5′-upstream region of the gene in the parent strain QM9414 is identical to that of PC-3-7, although the expression level of xyn3 in PC-3-7 has been reported to be at least 1,000 times greater than in QM9414. These results suggest that xyn3 expression in T. reesei QM9414 is silenced. The consensus sequences for ACEI, ACEII, CREI, and the Hap2/3/5 protein complex are all present in the upstream region of xyn3. Deletion analysis of the upstream region revealed that two regions containing consensus sequences for the known regulatory elements play important roles for xyn3 expression.  相似文献   

19.
Improving genetic transformation efficiency is a major concern in plant genetic engineering. While various strategies have been investigated, the enhancement of selectable marker gene expression has not been tried extensively. We used maize matrix attachment regions (MARs) to bracket an herbicide resistance transgene, bar. MARs have been reported to enhance transgene expression level and stability. We show here that MARs not only enhance transformation efficiency by 50%, but are also able to increase or decrease relative efficiencies of each step of the regeneration process depending on MAR sequence combinations. Furthermore, we assessed the trans-effect of MARs in co-bombardment experiments with two independent plasmids, one including the MAR sequences and the other one the bar gene. As for simple bombardment, MARs enhanced transformation efficiency by having a positive influence on organogenesis step in the regeneration process.  相似文献   

20.
The codon modified neutral endo-β-1,4-glucanase gene celEn, originating from the anaerobic fungus Orpinomyces sp. strain PC-2, was inserted between the strong promoter Pcel7A and the terminator Tcel7A from Trichoderma reesei. The resulting expression cassette was ligated to the pCAMBIA1300 Agrobacterium binary vector to construct pCB-hE that also contains a hygromycin B resistance marker. pCB-hE was introduced into T. reesei ZU-02 through an Agrobacterium tumefaciens–mediated transformation procedure that has been modified with an improved transformation efficiency of 12,500 transformants per 107 conidia. Stable integration of the celEn gene into the chromosomal DNA of T. reesei ZU-02 was confirmed by PCR. After 48 h fermentation in shaking flasks, the endo-β-1,4-glucanase activities increased to 55–70 IU ml−1 in transgenic strains, which were about 6–7 times higher than that of the original ZU-02 strain (9.5 IU ml−1). When the avicel was added in fermentation medium, the endo-β-1,4-glucanase activity in the transgenic strains could be further increased to 193.6 IU ml−1 after 84 h fermentation. Transgenic T. reesei strains with high neutral endo-β-1,4-glucanase activity will be particularly suitable for certain applications in textile industry. The improved procedures for overproduction and secretion of heterologous proteins in transgenic T. reesei can also be used to generate similar recombinant proteins for research or industrial purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号