首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated ceramide concentrations in adipocytes and skeletal muscle impair PKB (protein kinase B; also known as Akt)-directed insulin signalling to key hormonal end points. An important feature of this inhibition involves the ceramide-induced activation of atypical PKCzeta (protein kinase C-zeta), which associates with and negatively regulates PKB. In the present study, we demonstrate that this inhibition is critically dependent on the targeting and subsequent retention of PKCzeta-PKB within CEM (caveolin-enriched microdomains), which is facilitated by kinase interactions with caveolin. Ceramide also recruits PTEN (phosphatase and tensin homologue detected on chromosome 10), a 3'-phosphoinositide phosphatase, thereby creating a repressive membrane microenvironment from which PKB cannot signal. Disrupting the structural integrity of caveolae by cholesterol depletion prevented caveolar targeting of PKCzeta and PKB and suppressed kinase-caveolin association, but, importantly, also ameliorated ceramide-induced inhibition of PKB. Consistent with this, adipocytes from caveolin-1-/- mice, which lack functional caveolae, exhibit greater resistance to ceramide compared with caveolin-1+/+ adipocytes. We conclude that the recruitment and retention of PKB within CEM contribute significantly to ceramide-induced inhibition of PKB-directed signalling.  相似文献   

2.
The serine-threonine kinase, Akt1/protein kinase Balpha is an important mediator of growth, survival, and metabolic signaling. Recent studies have implicated cholesterol-rich, lipid raft microdomains in survival signals mediated by Akt1. Here we address the role of lipid raft membranes as a potential site of intersection of androgenic and Akt1 signaling. A subpopulation of androgen receptor (AR) was found to localize to a lipid raft subcellular compartment in LNCaP prostate cancer cells. Endogenous AR interacted with endogenous Akt1 preferentially in lipid raft fractions and androgen substantially enhanced the interaction between the two proteins. The association of AR with Akt1 was inhibited by the anti-androgen, bicalutamide, but was not affected by inhibition of phosphoinositide 3-kinase (PI3K). Androgen promoted endogenous Akt1 activity in lipid raft fractions, in a PI3K-independent manner, within 10 min of treatment. Fusion of a lipid raft targeting sequence to AR enhanced localization of the receptor to rafts, and stimulated Akt1 activity in response to androgen, while reducing the cells' dependence on constitutive signaling through PI3K for cell survival. These findings suggest that signals channeled through AR and Akt1 intersect by a mechanism involving formation within lipid raft membranes of an androgen-responsive, extranuclear AR/Akt1 complex. Our results indicate that cholesterol-rich membrane microdomains play a role in transmitting non-genomic signals involving androgen and the Akt pathway in prostate cancer cells.  相似文献   

3.
In addition to DNA damage, exposure to irradiation involves the plasma membrane in the early phases of gamma-ray-induced cell death. The involvement of raft microdomains following gamma-radiation derives essentially from the role of ceramide as a critical component leading to apoptosis. It is demonstrated here that gamma-irradiation of a radiosensitive human head and neck squamous carcinoma cell line (SCC61) results in the triggering of raft coalescence to larger membrane platforms associated with the externalization of an acid sphingomyelinase (A-SMase), leading to ceramide release in raft, 30 min postirradiation. For the first time, we show that this structural rearrangement is defective in the radioresistant SQ20B cells and associated with the lack of A-SMase activation and translocation, a result which could explain in part their resistance to apoptosis following ionizing radiation. Moreover, we show that SQ20B are protected against radiation injury through a fivefold upper level of endogenous glutathione compared to SCC61. Overcoming the endogenous antioxidant defenses of SQ20B through either H(2)O(2) treatment or GSH depletion triggers A-SMase activation and translocation, raft coalescence, and apoptosis. On the contrary, ROS scavengers abolished these events in radiosensitive SCC61 cells. Translation of this concept to tumor biology suggests that manipulation of rafts through redox equilibrium may provide opportunities for radiosensitization of tumor cells.  相似文献   

4.
By a contact-dependent surface interaction, the measles virus (MV) glycoprotein complex induces a pronounced inhibition of T-cell proliferation. We now show that MV directly interacts with glycosphingolipid-enriched membrane microdomains on human primary T cells and alters recruitment and segregation of membrane proximal signaling components. Contact-dependent interference with T-cell receptor-stimulated tyrosine phosphorylation and Ca mobilization is a late event seen 24 h after MV treatment. In contrast, stimulated recruitment of pleckstrin homology domain-containing proteins such as Akt and Vav is inhibited early after MV contact, as is segregation of the activated Akt kinase from rafts. Tyrosine phosphorylation of the regulatory subunit of the phosphatidylinositol 3-kinase (PI3K), p85, is apparently normal then, yet this protein fails to partition to the lipid raft fraction, and this is associated with stable expression of its negative regulator Cbl-b. Thus, by interaction with lipid rafts, MV contact initially targets recruitment of PI3K by preventing stimulated Cbl-b degradation and activation of PI3K-dependent signaling components.  相似文献   

5.
We have previously demonstrated that hexanoyl-D-erythro-sphingosine (C(6)-ceramide), an anti-mitogenic cell-permeable lipid metabolite, limited vascular smooth muscle growth by abrogating trauma-induced Akt activity in a stretch injury model of neointimal hyperplasia. Furthermore, ceramide selectively and directly activated protein kinase C zeta (PKC zeta) to suppress Akt-dependent mitogenesis. To further analyze the interaction between ceramide and PKC zeta, the ability of ceramide to localize within highly structured lipid microdomains (rafts) and activate PKC zeta was investigated. Using rat aorta vascular smooth muscle cells (A7r5), we now demonstrate that C(6)-ceramide treatment results in an increased localization and phosphorylation of PKC zeta within caveolin-enriched lipid microdomians to inactivate Akt. In addition, ceramide specifically reduced the association of PKC zeta with 14-3-3, a scaffold protein localized to less structured regions within membranes. Pharmacological disruption of highly structured lipid microdomains resulted in abrogation of ceramide-activated, PKC zeta-dependent Akt inactivation, whereas molecular strategies suggest that ceramide-dependent PKC zeta phosphorylation of Akt3 at Ser(34) was necessary for ceramide-induced vascular smooth muscle cell growth arrest. Taken together, these data demonstrate that structured membrane microdomains are necessary for ceramide-induced activation of PKC zeta and resultant diminished Akt activity, leading to vascular smooth muscle cell growth arrest.  相似文献   

6.
The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction.  相似文献   

7.
Recent studies indicate that insulin stimulation of glucose transporter (GLUT)4 translocation requires at least two distinct insulin receptor-mediated signals: one leading to the activation of phosphatidylinositol 3 (PI-3) kinase and the other to the activation of the small GTP binding protein TC10. We now demonstrate that TC10 is processed through the secretory membrane trafficking system and localizes to caveolin-enriched lipid raft microdomains. Although insulin activated the wild-type TC10 protein and a TC10/H-Ras chimera that were targeted to lipid raft microdomains, it was unable to activate a TC10/K-Ras chimera that was directed to the nonlipid raft domains. Similarly, only the lipid raft-localized TC10/ H-Ras chimera inhibited GLUT4 translocation, whereas the TC10/K-Ras chimera showed no significant inhibitory activity. Furthermore, disruption of lipid raft microdomains by expression of a dominant-interfering caveolin 3 mutant (Cav3/DGV) inhibited the insulin stimulation of GLUT4 translocation and TC10 lipid raft localization and activation without affecting PI-3 kinase signaling. These data demonstrate that the insulin stimulation of GLUT4 translocation in adipocytes requires the spatial separation and distinct compartmentalization of the PI-3 kinase and TC10 signaling pathways.  相似文献   

8.
The precise subcellular localization of ion channels is often necessary to ensure rapid and efficient integration of both intracellular and extracellular signaling events. Recently, we have identified lipid raft association as a novel mechanism for the subcellular sorting of specific voltage-gated K(+) channels to regions of the membrane rich in signaling complexes. Here, we demonstrate isoform-specific targeting of voltage-gated K(+) (Kv) channels to distinct lipid raft populations with the finding that Kv1.5 specifically targets to caveolae. Multiple lines of evidence indicate that Kv1.5 and Kv2.1 exist in distinct raft domains: 1) channel/raft association shows differential sensitivity to increasing concentrations of Triton X-100; 2) unlike Kv2.1, Kv1.5 colocalizes with caveolin on the cell surface and redistributes with caveolin following microtubule disruption; and 3) immunoisolation of caveolae copurifies Kv1.5 channel. Both depletion of cellular cholesterol and inhibition of sphingolipid synthesis alter Kv1.5 channel function by inducing a hyperpolarizing shift in the voltage dependence of activation and inactivation. The differential targeting of Kv channel subtypes to caveolar and noncaveolar rafts within a single membrane represents a unique mechanism of compartmentalization, which may permit isoform-specific modulation of K(+) channel function.  相似文献   

9.
Natural killer (NK) cells express an activating receptor, 2B4, that enhances cellular cytotoxicity. Upon NK cell activation by ligation of 2B4, the intracellular domain of 2B4 associates with the X-linked lymphoproliferative disease (XLP) gene product, signaling lymphocytic activation molecule-associated protein/SH2D1A (SAP/SH2D1A). Defective intracellular association of 2B4 with mutated SAP/SH2D1A is likely to underlie the defects in cytotoxicity observed in NK cells from patients with XLP. We report here a role for phosphoinositide 3-kinase (PI3K) in the recruitment and association of SAP/SH2D1A to 2B4 in human NK cells. The activation of normal NK cells by ligation of 2B4 leads to the phosphorylation of 2B4, recruitment of SAP/SH2D1A, and association of the p85 regulatory subunit of PI3K. The inhibition of PI3K enzymatic activity with either wortmannin or LY294002 prior to 2B4 ligation does not alter the association of 2B4 with the p85 subunit but prevents the recruitment of SAP/SH2D1A to 2B4. In addition, PI3K inhibitors significantly diminish the cytotoxic function of primary NK cells. This observed inhibition of cytotoxicity, present in normal NK cells, was less apparent or absent in NK cells derived from a patient with XLP. These data indicate that the cytotoxicity of activated NK cells is mediated by the association of 2B4 and SAP/SH2D1A, and that this association is dependent upon the activity of PI3K.  相似文献   

10.
Saturated fatty acids, such as palmitate, promote accumulation of ceramide, which impairs activation and signalling of PKB (protein kinase B; also known as Akt) to important end points such as glucose transport. SPT (serine palmitoyl transferase) is a key enzyme regulating ceramide synthesis from palmitate and represents a potential molecular target in curbing lipid-induced insulin resistance. In the present study we explore the effects of palmitate upon insulin action in L6 muscle cells in which SPT expression/activity has been decreased by shRNA (small-hairpin RNA) or sustained incubation with myriocin, an SPT inhibitor. Incubation of L6 myotubes with palmitate (for 16 h) increases intramyocellular ceramide and reduces insulin-stimulated PKB activation and glucose uptake. PKB inhibition was not associated with impaired IRS (insulin receptor substrate) signalling and was ameliorated by short-term treatment with myriocin. Silencing SPT expression (approximately 90%) by shRNA or chronic cell incubation with myriocin (for 7 days) markedly suppressed SPT activity and palmitate-driven ceramide synthesis; however, challenging these muscle cells with palmitate still inhibited the hormonal activation of PKB. This inhibition was associated with reduced IRS1/p85-PI3K (phosphoinositide 3-kinase) coupling that arises from diverting palmitate towards greater DAG (diacylglycerol) synthesis, which elevates IRS1 serine phosphorylation via activation of DAG-sensitive PKCs (protein kinase Cs). Treatment of SPT-shRNA cells or those treated chronically with myriocin with PKC inhibitors antagonized palmitate-induced loss in insulin signalling. The findings of the present study indicate that SPT plays a crucial role in desensitizing muscle cells to insulin in response to incubation with palmitate. While short-term inhibition of SPT ameliorates palmitate/ceramide-induced insulin resistance, sustained loss/reduction in SPT expression/activity promotes greater partitioning of palmitate towards DAG synthesis, which impacts negatively upon IRS1-directed insulin signalling.  相似文献   

11.
Lipid rafts are membrane microdomains distinct from caveolae, whose functions in polypeptide growth factor signalling remain unclear. Here we show that in small cell lung cancer (SCLC) cells, specific growth factor receptors such as c-Kit associate with lipid rafts and that these domains play a critical role in the activation of phosphoinositide 3-kinase (PI3K) signalling. The class IA p85/p110alpha associated with Src in lipid rafts and was activated by Src in vitro. Lipid raft integrity was essential for Src activation in response to stem cell factor (SCF) and raft disruption selectively inhibited activation of protein kinase B (PKB)/Akt in response to SCF stimulation. Moreover, inhibition of Src kinases blocked PKB/Akt activation and SCLC cell growth. The use of fibroblasts with targeted deletion of the Src family kinase genes confirmed the role of Src kinases in PKB/Akt activation by growth factor receptors. Moreover a constitutively activated mutant of Src also stimulated PI3K/Akt in lipid rafts, indicating that these microdomains play a role in oncogenic signalling. Together our data demonstrate that lipid rafts play a key role in the activation of PI3K signalling by facilitating the interaction of Src with specific PI3K isoforms.  相似文献   

12.
Cationic liposomes are commonly used as vectors to effectively introduce foreign genes into target cells. In another function, we recently showed that cationic liposomes bound to the mast cell surface suppress the degranulation induced by the cross‐linking of high‐affinity immunoglobulin E receptor in a time‐ and dose‐dependent manner. This suppression is mediated by the impairment of the sustained level of intracellular Ca2+ concentration ([Ca2+]i) via the inhibition of store‐operated Ca2+ entry. Further, we revealed that the mechanism underlying an impaired [Ca2+]i increase is the inhibition of the activation of the phosphatidylinositol 3‐kinase (PI3K)‐Akt pathway. Yet, how cationic liposomes inhibit the PI3K‐Akt pathway is still unclear. Here, we focused on caveolin‐1, a major component of caveolae, which is reported to be involved in the activation of the PI3K‐Akt pathway in various cell lines. In this study, we showed that caveolin‐1 translocated from the cytoplasm to the plasma membrane after the activation of mast cells and colocalized with the p85 subunit of PI3K, which seemed to be essential for PI3K activity. Meanwhile, cationic liposomes suppressed the translocation of caveolin‐1 to the plasma membrane and the colocalization of caveolin‐1 with PI3K p85 also at the plasma membrane. This finding provides new information for the development of therapies using cationic liposomes against allergies.  相似文献   

13.
Cholesterol and sphingomyelin (SM) associate in raft domains and are metabolically coregulated. One aspect of coordinate regulation occurs in the Golgi apparatus where oxysterol binding protein (OSBP) mediates sterol-dependent activation of ceramide transport protein (CERT) activity and SM synthesis. Because CERT transfer activity is dependent on its phosphatidylinositol 4 phosphate [PtdIns(4)P]-specific pleckstrin homology domain, we investigated whether OSBP activation of CERT involved a Golgi-associated PtdIns 4-kinase (PI4K). Cell fractionation experiments revealed that Golgi/endosome-enriched membranes from 25-hydroxycholesterol-treated Chinese hamster ovary cells had increased activity of a sterol-sensitive PI4K that was blocked by small interfering RNA silencing of OSBP. Consistent with this sterol-requirement, OSBP silencing also reduced the cholesterol content of endosome/trans-Golgi network (TGN) fractions containing PI4KIIα. PI4KIIα, but not PI4KIIIβ, was required for oxysterol-activation of SM synthesis and recruitment of CERT to the Golgi apparatus. However, neither PI4KIIα nor PI4KIIIβ expression was required for 25-hydroxycholesterol-dependent translocation of OSBP to the Golgi apparatus. The presence of OSBP, CERT, and PI4KIIα in the TGN of oxysterol-stimulated cells suggests that OSBP couples sterol binding or transfer activity with regulation of PI4KIIα activity, leading to CERT recruitment to the TGN and increased SM synthesis.  相似文献   

14.
15.
Peptide hormones act to regulate apoptosis through activation of multiple pro- and anti-apoptotic signaling cascades of which lipid signaling events represent an important facet of the cellular rheostat that determines survival and death decisions. Activation of sphingomyelinase, which generates ceramide, is an intermediate in cellular stress responses and induction of apoptosis in many systems. Conversely, phosphatidylinositol 3-kinase (PI3K) is a critical signaling molecule involved in regulating cell survival and proliferation pathways. In the present study, we investigate cross-talk between the PI3K and sphingomyelinase pathways as a mechanism for regulation of cell survival/death decisions. We show that phorbol ester, insulin-like growth factor 1, and a constitutively active PI3K suppress both tumor necrosis factor-induced apoptosis and ceramide generation. Conversely, inhibition of the PI3K pathway with expression of a kinase-dead PI3K both prevented survival signaling and enhanced tumor necrosis factor-induced ceramide generation. The ability of exogenous sphingomyelinase to induce ceramide generation was partially suppressed by expression of constitutively active PI3K and enhanced by inhibition of PI3K suggesting that cross-talk between PI3K and ceramide generation within cells is regulated subsequent to activation of sphingomyelinase.  相似文献   

16.
Many glucocorticoid (Gc) actions are of rapid onset and therefore require acute regulation of intracellular signaling cascades. Integration of diverse extracellular signals requires cross-talk between intracellular pathways, suggesting the existence of nodes for signal interaction, such as the specialized membrane microdomains caveolae. We have identified rapid Gc-dependent phosphorylation of caveolin, and protein kinase B (PKB)/Akt, in the lung epithelial cell line A549 and found this was dependent on src kinases. There was also activation of PKB downstream molecules glycogen synthase kinase-3beta, and mammalian target of rapamycin. Subcellular fractionation colocalized glucocorticoid receptor (GR) and c-src to caveolin-containing membrane fractions. Coimmunoprecipitation studies also identified interactions between GR and caveolin and suggested that the activation function 1 domain within the GR may serve to support an interaction between GR and caveolin. Disruption of lipid raft formation, impairment of caveolin function using dominant-negative caveolin, down-regulation of caveolin-1 using short hairpin RNA or complete ablation of caveolin-1 prevented Gc-induced activation of PKB. Loss of caveolin-1 also prevents Gc activation of glycogen synthase kinase-3beta and mammalian target of rapamycin. In contrast, caveolin interference/down-regulation had no effect on Gc transactivation. Functional analysis of caveolin-1 knockdown and knockout cells identified profound loss of Gc-mediated growth inhibition compared with controls, with a requirement for caveolin in order for Gc to regulate cell cycle progression. Therefore, disruption of caveolae leads to dissociation of Gc action, with impaired induction of PKB activation, and cell growth inhibition, but with negligible effects on Gc transactivation. These observations have implications for understanding the diverse physiological actions of Gc.  相似文献   

17.
Tumor necrosis factor (TNF) contributes to insulin resistance by binding to the 55kDa TNF receptor (TNF-R55), resulting in serine phosphorylation of proteins such as insulin receptor (IR) substrate (IRS)-1, followed by reduced tyrosine phosphorylation of IRS-1 through the IR and, thereby, diminished IR signal transduction. Through independent receptor domains, TNF-R55 activates a neutral (N-SMase) and an acid sphingomyelinase (A-SMase), that both generate the sphingolipid ceramide. Multiple candidate kinases have been identified that serine-phosphorylate IRS-1 in response to TNF or ceramide. However, due to the fact that the receptor domain of TNF-R55 mediating inhibition of the IR has not been mapped, it is currently unknown whether TNF exerts these effects with participation of N-SMase or A-SMase. Here, we identify the death domain of TNF-R55 as responsible for the inhibitory effects of TNF on tyrosine phosphorylation of IRS-1, implicating ceramide generated by A-SMase as a downstream mediator of inhibition of IR signaling.  相似文献   

18.
Insulin stimulation of adipocytes resulted in the recruitment of atypical PKC (PKCzeta/lambda) to plasma membrane lipid raft microdomains. This redistribution of PKCzeta/lambda was prevented by Clostridium difficile toxin B and by cholesterol depletion, but was unaffected by inhibition of phosphatidylinositol (PI) 3-kinase activity. Expression of the constitutively active GTP-bound form of TC10 (TC10Q/75L), but not the inactive GDP-bound mutant (TC10/T31N), targeted PKCzeta/lambda to the plasma membrane through an indirect association with the Par6-Par3 protein complex. In parallel, insulin stimulation as well as TC10/Q75L resulted in the activation loop phosphorylation of PKCzeta. Although PI 3-kinase activation also resulted in PKCzeta/lambda phosphorylation, it was not recruited to the plasma membrane. Furthermore, insulin-induced GSK-3beta phosphorylation was mediated by both PI 3-kinase-PKB and the TC10-Par6-atypical PKC signaling pathways. Together, these data demonstrate that PKCzeta/lambda can serve as a convergent downstream target for both the PI 3-kinase and TC10 signaling pathways, but only the TC10 pathway induces a spatially restricted targeting to the plasma membrane.  相似文献   

19.
Addition of exogenous ceramide causes a significant displacement of cholesterol in lipid raft model membranes. However, whether ceramide-induced cholesterol displacement is sufficient to alter the protein composition of caveolin-enriched lipid raft membranes is unknown. Therefore, we examined whether increasing endogenous ceramide levels with bacterial sphingomyelinase (bSMase) depleted cholesterol and changed the protein composition of caveolin-enriched membranes (CEMs) isolated from immortalized Schwann cells. bSMase increased ceramide levels severalfold and decreased the cholesterol content of detergent-insoluble CEMs by 25-50% within 2 h. To examine the effect of ceramide on the protein composition of the CEMs, we performed a quantitative proteomic analysis using stable isotope labeling of cells in culture and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Although ceramide rapidly depleted lipid raft cholesterol, the levels of the cholesterol binding protein caveolin-1 (Cav-1) decreased by 25% only after 8 h. Importantly, replenishing the cells with cholesterol rapidly reversed the loss of Cav-1 from the CEMs. Ceramide-induced cholesterol depletion increased the association of 5'-nucleotidase and ATP synthase beta-subunit with the CEMs but had a minimal effect on changing the abundance of other lipid raft proteins, such as flotillin-1 and G-proteins. These results suggest that the ceramide-induced loss of cholesterol from CEMs may contribute to altering the lipid raft proteome.  相似文献   

20.
In the present study, we identified novel negative cross-talk between the angiotensin II subtype 2 (AT2) receptor and insulin receptor signaling in the regulation of phosphoinositide 3-kinase (PI3K), Akt, and apoptosis in rat pheochromocytoma cell line, PC12W cells, which exclusively express AT2 receptor. We demonstrated that insulin-mediated insulin receptor substrate (IRS)-2-associated PI3K activity was inhibited by AT2 receptor stimulation, whereas IRS-1-associated PI3K activity was not significantly influenced. AT2 receptor stimulation did not change insulin-induced tyrosine phosphorylation of IRS-2 or its association with the p85alpha subunit of PI3K, but led to a significant reduction of insulin-induced p85alpha phosphorylation. AT2 receptor stimulation increased the association of a protein tyrosine phosphatase, SHP-1, with IRS-2. Moreover, we demonstrated that AT2 receptor stimulation inhibited insulin-induced Akt phosphorylation and that insulin-mediated antiapoptotic effect was also blocked by AT2 receptor activation. Overexpression of a catalytically inactive dominant negative SHP-1 markedly attenuated the AT2 receptor- mediated inhibition of IRS-2-associated PI3K activity, Akt phosphorylation, and antiapoptotic effect induced by insulin. Taken together, these results indicate that AT2 receptor-mediated activation of SHP-1 and the consequent inhibition IRS-2-associated PI3K activity contributed at least partly to the inhibition of Akt phosphorylation, thereby inducing apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号