首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progress towards developing vaccines that can stimulate an immune response against growing tumours has involved the identification of the protein antigens associated with a given tumour type. Epitope mapping of tumour antigens for HLA class I- and class II-restricted binding motifs followed by immunization with these peptides has induced protective immunity in murine models against cancers expressing the antigen. MHC class I molecules presenting the appropriate peptides are necessary to provide the specific signals for recognition and killing by cytotoxic T cells (CTL). The principle mechanism of tumour escape is the loss, downregulation or alteration of HLA profiles that may render the target cell resistant to CTL lysis, even if the cell expresses the appropriate tumour antigen. In human tumours HLA loss may be as high as 50%, inferring that a reduction in protein levels might offer a survival advantage to the tumour cells. Alternatively, MHC loss may render tumour cells susceptible to natural killer cell-mediated lysis because they are known to act as ligands for killer inhibitory receptors (KIRs). We review the molecular features of MHC class I and class II antigens and discuss how surface MHC expression may be regulated upon cellular transformation. In addition, selective loss of MHC molecules may alter target tumour cell susceptibility to lymphocyte killing. The development of clinical immunotherapy will need to consider not only the expression of relevant CTL target MHC proteins, but also HLA inhibitory to NK and T cells. Received: 20 March 1999 / Accepted: 3 May 1999  相似文献   

2.
IT has been well documented that tumour-bearing mice can become resistant to their own tumours, especially with chemically induced fibrosarcomas1–3 and the importance of cell-mediated immune responses rather than humoral antibody in the resistance to tumour transplants has been emphasized3,4, although the exact mechanism of tumour cell destruction remains ill-defined. Studies in mice5,6, using allogeneic tumour cells, have demonstrated that thymus-derived (T) lymphocytes are essential for the killing of tumour cells. In addition, using an in vitro method of immunization against histocompatibility antigens, tumour cell destruction either in vitro1 or in vivo8 was shown to be due to T cells alone. In all of these latter studies, however, it is the strong H-2 histocompatibility antigens that are inducing the immune response and not the tumour-specific transplantation antigens (TSTA). We describe here a specific anti-TSTA response to a murine plasma cell tumour which can be transferred with lymphoid cells and which can be shown to involve the essential participation of T cells.  相似文献   

3.
Dendritic cells are special and powerful antigen‐presenting cells that can induce primary immune responses against tumour‐associated antigens. They can present antigens via both MHC‐I and MHC‐II, so they have the ability to stimulate both cytotoxic T lymphocytes and T helper cells. Furthermore, CD8+ cytotoxic T lymphocytes require activation by CD4+ T cells. This requires a CD4+T cell activator molecule, of which PADRE is one of the best. We chose an approach to use both of these important arms of the immune system. We prepared dendritic cells from mouse bone marrow, loaded them with our target peptides (P5 peptide alone or P5 + PADRE), and then injected these pulsed dendritic cells alone or in combination with CpG‐ODN (as adjuvant) into BALB/C mice. After the last boosting dose, mice were inoculated with TUBO cells, which overexpress HER2/neu. Two weeks after the tumour cell injection, immunological tests were performed on splenocyte suspensions, and the remaining mice were evaluated for tumour growth and survival. Our data indicate the formulation that contains PADRE plus P5 loaded onto DC in combination with CpG‐ODN was the most effective formulation at inducing immune responses. Interferon production in CD4+ and CD8+ gated cells, cytotoxicity rates of target cells and mice survival were all significantly greater in this group than in controls, and all the mice in this group were tumour‐free throughout the experiment. Based on our results and the role of HER2/neu as a candidate in human immunotherapy, this approach may be an effective cancer treatment.  相似文献   

4.
The endoplasmic reticulum (ER) is where the major histocompatibility complex (MHC) class I molecules are loaded with epitopes to cause an immune cellular response. Most of the protein antigens are degraded in the cytoplasm to amino acids and few epitopes reach the ER. Antigen targeting of this organelle by Calreticulin (CRT) fusion avoids this degradation and enhances the immune response. We constructed a recombinant adenovirus to express the E7 antigen with an ER‐targeting signal peptide (SP) plus an ER retention signal (KDEL sequence). In cell‐culture experiments we demonstrated that this new E7 antigen, SP‐E7‐KDEL, targeted the ER. Infection of mice with this recombinant adenovirus that expresses SP‐E7‐KDEL showed interferon induction and tumour‐protection response, similar to that provided by an adenovirus expressing the E7 antigen fused to CRT. This work demonstrated that just by adding a SP and the KDEL sequence, antigens can be targeted and retained in the ER with a consequent enhancement of immune response and tumour protection. These results will have significant clinical applications.  相似文献   

5.
Cell-mediated immunity in protection and pathology of malaria   总被引:28,自引:0,他引:28  
The stimulation of protective immunity against malaria is the goal of many research groups. But trials with antigens that stimulate antibodies have yet to fulfil these expectations, and it is increasingly recognized that non-antibody-mediated immunity is also important in immunity to malaria - especially through mediators such as gamma interferon, tumour necrosis factor and reactive forms of oxygen. However, the host can suffer if this type of immune response is too exuberant, and in this review, Ian Clark argues that much of what is recognized as clinical malaria is caused in this way. He suggests that only when discussed in these terms can malaria illness and pathology be seen as a coherent, predictable entity instead of a sea of unconnected surprises. Moreover, these ideas have important implications for vaccine development that, although requiring more basic work, must not be neglected.  相似文献   

6.
Immunotherapeutic potential of whole tumour cells   总被引:5,自引:0,他引:5  
Despite the identification of tumour antigens and their subsequent generation in subunit form for use as cancer vaccines, whole tumour cells remain a potent vehicle for generating anti-tumour immunity. This is because tumour cells express an array of target antigens for the immune system to react against, avoiding problems associated with major histocompatibility complex (MHC)-restricted epitope identification for individual patients. Furthermore, whole cells are relatively simple to propagate and are potentially efficient at contributing to the process of T cell priming. However, whole cells can also possess properties that allow for immune evasion, and so the question remains of how to enhance the immune response against tumour cells so that they are rejected. Scenarios where whole tumour cells may be utilised in immunotherapy include autologous tumour cell vaccines generated from resected primary tumour, allogeneic (MHC-disparate) cross-reactive tumour cell line vaccines, and immunotherapy of tumours in situ. Since tumour cells are considered poorly immunogenic, mainly because they express self-antigens in a non-stimulatory context, the environment of the tumour cells may have to be modified to become stimulatory by using immunological adjuvants. Recent studies have re-evaluated the relative roles of direct and cross-priming in generating anti-tumour immunity and have highlighted the need to circumvent immune evasion.  相似文献   

7.
8-Mercaptoguanosine (8sGuo) has been reported to enhance responses of normal mice to the type 2 antigen trinitrophenol (TNP)-Ficoll. In this report, we demonstrate that this immune adjuvant restores the immune responsiveness of B cells from mice with the x-linked immune defect (xid), which are nonresponsive to the type 2 antigen TNP-Ficoll. The data demonstrate that TNP-Ficoll, which by itself cannot stimulate anti-TNP responses in CBA/N mice, is able to initiate the initial steps of cell activation in xid B cells and render them sensitive to the subsequent differentiative effects of 8sGuo. We propose that the unresponsiveness of xid B cells to type 2 antigens reflects not the inability of these antigens to stimulate xid B cells from G0 to G1, but rather the inability of these antigen-activated cells to respond to a second signal to which these immune defective B cells are poorly responsive and can be substituted for by 8sGuo.  相似文献   

8.
Biological chemistry of immunomodulation by zwitterionic polysaccharides   总被引:1,自引:0,他引:1  
Capsular polysaccharides isolated from pathogenic bacteria are comprised typically of many repeating units from one to eight or more monosaccharides in length. These polysaccharides stimulate the murine humoral immune system to elicit primarily IgM antibody responses. Studies conducted primarily in the mouse have characterized these polymers as T cell-independent antigens. These mouse studies and the relatively poor immunogenicity of polysaccharides in human hosts have led to the design of vaccines by coupling these polysaccharides to protein carriers to stimulate a T cell-dependent response. However, a newly described class of bacterial polysaccharides has been characterized that have the ability to modulate the cellular immune system. They are structurally diverse, but all share a zwitterionic charge motif that allows them to directly interact with T cells and antigen-presenting cells to initiate an immunomodulatory T cell response. These polymers, termed zwitterionic polysaccharides (ZPSs), elicit T cell-derived chemokines and cytokines that influence the immune response governing at least one classic host response to bacterial infection: abscess formation. This review will describe the biological and structural aspects of ZPSs that convey these activities.  相似文献   

9.
An MHC class I restricted cytotoxic T lymphocyte (CTL) activity assay has recently been established for rainbow trout. MHC class I restricted cytotoxicity probably plays a critical role in immunity to most viral diseases in mammals and may play a similar role in fish. Therefore, it is very important to investigate what types of vaccines can stimulate this immune response. Although logical candidates for vaccine components that can stimulate an MHC class I restricted response are live attenuated viruses and DNA vaccines, these materials are generally not allowed in fish for commercial vaccine use due to potential safety issues. In mammals, however, a number of interesting vaccination strategies based on exogenous antigens that stimulate MHC class I restricted cytotoxicity have been described. Several of these strategies are discussed in this review in the context of fish vaccination.  相似文献   

10.
Mouse studies have shown that the immune system can reject tumours, and the identification of tumour antigens that can be recognized by human T cells has facilitated the development of immunotherapy protocols. Vaccines against cancer aim to induce tumour-specific effector T cells that can reduce the tumour mass, as well as tumour-specific memory T cells that can control tumour relapse. Owing to their capacity to regulate T-cell immunity, dendritic cells are increasingly used as adjuvants for vaccination, and the immunogenicity of antigens delivered by dendritic cells has now been shown in patients with cancer. A better understanding of how dendritic cells regulate immune responses will allow us to better exploit these cells to induce effective antitumour immunity.  相似文献   

11.
The role of the immune system in combating tumour progression has been studied extensively. The two branches of the immune response - humoral and cell-mediated - act both independently and in concert to combat tumour progression, the success of which depends on the immunogenicity of the tumour cells. The immune system discriminates between transformed cells and normal cells by virtue of the presence of unique antigens on tumour cells. Despite this, the immune system is not always able to detect and kill cancerous cells because neoplasms have also evolved various strategies to escape immune surveillance. Attempts are being made to trigger the immune system into an early and efficient response against malignant cells, and various therapeutic modalities are being developed to enhance the strength of the immune response against tumours. This review aims to elucidate the tumoricidal role of various components of the immune system, including macrophages, lymphocytes, dendritic cells and complement.  相似文献   

12.
Helper CD4+ T lymphocytes can be divided into two subsets, Th1 and Th2. The types of Th subsets activated during the adaptive immune response inductiondetermine the efficacy of immune responses against thee antigens introduced. Selective differentiation of subsets of CD4+ T lymphocytes has been known to be influenced by several factors, such as the cytokine environment around the T cells, the specificity of antigen recognition bythe T cell receptor, the expression of costimulatory molecules, and/ or the dose of the antigen applied to stimulate the T cells. In this study, we tried to determine the influence of the antigen dose on the selective priming of T lymphocytes when an inefficient antigen was applied since all the conclusions drawn from previous experiments were based on experiments with immune systems which responded well against the antigens introduced. When the recombinant hen egg-white lysozyme (HEL) was used too stimulate immune responses in HEL low-responder C57B3L/6 mice, dose-dependent selective priming of immune responses was not observed. However, when the variant antigen, which had been characterized as an efficientantigen in anti-HEL immune response induction in the low-responder mice, was applied, dose-dependent selective priming of Th immune responses was clearly demonstrated. These results suggested that dose-dependent selective priming of Th immune responses could be achieved only by the antigens with an affinity over a certain level.  相似文献   

13.
Different Mycobacterium tuberculosis strains operate different immune evasion strategies for their survival in the host. This mainly depends on the virulence of the strain and the host immune responses. The most virulent strains are actively involved in the transmission, widely spread in the community and induce differential immune responses. We evaluated the immune response of a sonicate antigen prepared from one predominant strain (S7) from M. tuberculosis harbouring a single copy of IS6110. Significant lymphoproliferative response against purified protein derivative from tubercle bacillus (PPD) and H37Rv antigens was observed in PPD positive normal individuals and tuberculosis patients. Interferon-gamma (IFN-gamma) levels against these antigens were significantly increased in normal individuals but not in tuberculosis patients. The antigen S7 showed marginal T-cell proliferation but did not induce IFN-gamma secretion in both groups. Conversely, it induced significantly high levels of cytokine interleukin 4 (IL-4) in normal individuals. The macrophage cytokines, IL-12 and tumour necrosis factor alpha (TNF-alpha), did not show S7 antigen specific stimulation. The intracellular cytokine further confirmed an increase in IL-4(+)/CD4+ T-cells and a decrease in IFN-gamma(+)/CD4+ T-cells upon stimulation. The antibody response showed an increase in IgG and IgA levels against this antigen in normal individuals. These observations suggest that antigen S7 modulates the immune response towards T helper cell type 2 by suppressing T helper cell type 1 protective immune response in PPD positive normal individuals. We speculate that some components of this sonicate antigen are associated with immunosuppressive response.  相似文献   

14.
Using the chromium release assay and the single cell assay in agarose, we study the cytotoxic reaction of the MHC-restricted T lymphocyte clones P89:15 and P1:3, which recognize distinct but specific tumour antigens on the surface of syngeneic P815 mastocytoma cells. We propose a mathematical model which describes these experiments, accounts for the strongly non-Michaelian behaviour of the reaction and permits us to estimate the kinetic parameters characterizing effector-target conjugation and lethal hit delivery. The results show that the binding and lytic activity of effector cells is modulated by the number of targets bound to them. The binding of a second target by an effector having already a target bound is facilitated; on the other hand, an effector having bound two targets delivers a lethal hit more slowly than one with a single target bound. We investigate the role of these kinetic properties in the competition between the process of tumour progression due to cancer cell replication and the process of tumour regression due to T lymphocyte cytotoxic activity. For both clones, we estimate the effector-target ratio beyond which rejection prevails. This ratio is nine times larger for P1:3 than for P89:15. Furthermore, our analysis suggests that there exists an optimal specificity minimizing this ratio. Deviations from this optimum, be it in the sense of an increase or decrease of specificity, tendsto stabilize the tumoural state: a situation which in the broader context of the immune response evolution and regulation can be viewed as animmune response dilemma.  相似文献   

15.
The recent findings that prolonged expression of certain adenovirus (Ad) vector-encoded proteins, including human alpha1-antitrypsin (huAAT), mouse erythropoietin (EPO), and human factor IX, can be achieved in animals that do not mount an immune response to the reporter protein were obtained with mouse strains which have been shown to be capable of mounting a cellular immune response against Ad vector antigens. This suggests either that Ad vectors expressing nonimmunogenic transgenes fail to elicit a cellular immune response or that an Ad-specific cellular immune response does develop but is ineffective against cells expressing nonimmunogenic transgenes. Here we demonstrate that an Ad vector expressing huAAT administered by intravenous injection does stimulate an Ad-specific cellular immune response but that this response fails to abolish vector-directed gene expression in vivo. Moreover, expression of huAAT remained stable in animals stimulated by concurrent and multiple administrations of different Ad vectors or viruses. We also demonstrate prolonged expression of huAAT in CD1 mice transgenic for the huAAT gene, indicating that long-term expression is not restricted to C57BL/6 mice. These results demonstrate that under some circumstances, an Ad vector can direct prolonged expression of a nonimmunogenic transgene despite the presence of a robust Ad-specific cellular immune response.  相似文献   

16.
Preventive immunotherapy is an attractive strategy for patients at a high risk of having cancer. The success of prophylactic cancer vaccines would depend on the selection of target antigens that are essential for tumour growth and progression. The overexpression of GM3 ganglioside in murine and human melanomas and its important role in tumour progression makes this self antigen a potential target for preventive immunotherapy of this neoplasm. We have previously shown that preventive administration of a GM3-based vaccine to C57BL/6 mice elicited the rejection of the GM3 positive-B16 melanoma cells in most of the animals. Despite the crucial role of cellular immune response in tumour protection, the involvement of T cells in anti-tumour immunity of ganglioside vaccines is not described. Here, we examined the mechanisms by which this immunogen confers tumour protection. We have found that induction of anti-GM3 IgG antibodies correlated with tumour protection. Surprisingly, CD8+ T cells, but not NK1.1+ cells, are required in the effector phase of the antitumour immune response. The depletion of CD4+ T cells during immunization phase did not affect the anti-tumour activity. In addition, T cells from surviving-immunized animals secreted IFNγ when were co-cultured with IFNα-treated B16 melanoma cells or DCs pulsed with melanoma extract. Paradoxically, in spite of the glycolipidic nature of this antigen, these findings demonstrate the direct involvement of the cellular immune response in the anti-tumour protection induced by a ganglioside-based vaccine. Grant support: Center of Molecular Immunology, Elea Laboratories and Recombio.  相似文献   

17.
Helper CD4+ T lymphocytes can be divided into two subsets, Th1 and Th2. The types of Th subsets activated during the adaptive immune response induction determine the efficacy of immune responses against the antigens introduced. Selective differentiation of subsets of CD4+ T lymphocytes has been known to be influenced by several factors, such as the cytokine environment around the T cells, the specificity of antigen recognition by the T cell receptor, the expression of costimulatory molecules, and/or the dose of the antigen applied to stimulate the T cells. In this study, we tried to determine the influence of the antigen dose on the selective priming of T lymphocytes when an inefficient antigen was applied since all the conclusions drawn from previous experiments were based on experiments with immune systems which responded well against the antigens introduced. When the recombinant hen egg-white lysozyme (HEL) was used to stimulate immune responses in HEL low-responder C57BL/6 mice, dose-dependent selective priming of immune responses was not observed. However, when the variant antigen, which had been characterized as an efficient antigen in anti-HEL immune response induction in the low-responder mice, was applied, dose-dependent selective priming of Th immune responses was clearly demonstrated. These results suggested that dose-dependent selective priming of Th immune responses could be achieved only by the antigens with an affinity over a certain level.These two authors contributed equally on this work.  相似文献   

18.
Summary General immune competence was measured before treatment in 185 breast cancer patients. They were then followed for 5 to 11 years to determine its relationship to recurrence and its clinical value in predicting prognosis. The tests of immune competence used were immunoglobulins IgG, IgA, IgM, leucocyte counts, percentage and total lymphocyte counts and Mantoux and DNCB skin hypersensitivity tests.None of these tests was strongly predictive of recurrence on an individual basis, a finding similar to our results at 2 years. The longer period of follow-up now reported has provided no findings of unequivocal statistical significance, but suggests a biphasic host response to early tumours. The patients who developed recurrence within 5–11 years due to micrometastasis had higher lymphocyte counts in their preoperative assessment than patients who remained recurrence free. This suggests that small tumour volumes do not stimulate immunity and that large volumes depress it; tumours in between these groups are associated with higher levels. Examination of studies by a number of authors reveal parallel findings which have not been previously noted. It is not possible to confirm the significance of these findings from this study because of the heterogeneity of human breast cancer. However, if they indicate a general principle of a dynamic host-tumour interplay they have important implications for assessing immune competence at any single point of time and for the theory that cancer may arise during an anergic state. We hope that these findings will stimulate other workers to examine host-tumour interaction from this point of view.  相似文献   

19.
We develop a mathematical model for the initial growth of a tumour after a mutation in which either an oncogene is expressed or an anti-oncogene (i.e. tumour suppressor gene) is lost. Our model incorporates mitotic control by several biochemicals, with quite different regulatory characteristics, and we consider mutations affecting the cellular response to these control mechanisms. Our mathematical representation of these mutations reflects the current understanding of the roles of oncogenes and anti-oncogenes in controlling cell proliferation. Numerical solutions of our model, for biologically relevant parameter values, show that the different types of mutations have quite different effects. Mutations affecting the cell response to chemical regulators, or resulting in autonomy from such regulators, cause an advancing wave of tumour cells and a receding wave of normal cells. By contrast, mutations affecting the production of a mitotic regulator cause a slow localized increase in the numbers of both normal and mutant cells. We extend our model to investigate the possible effects of an immune response to cancer by including a first order removal of mutant cells. When this removal rate exceeds a critical value, the immune system can suppress tumour growth; we derive an expression for this critical value as a function of the parameters characterizing the mutation. Our results suggest that the effectiveness of the immune response after an oncogenic mutation depends crucially on the way in which the mutation affects the biochemical control of cell division.  相似文献   

20.
Strategies in cancer vaccines development   总被引:1,自引:0,他引:1  
The recent definition of tumour-specific immunity in cancer patients and the identification of tumour-associated antigens have generated renewed enthusiasm for the application of immune-based therapies for the treatment of malignancies. Recent developments in cancer vaccines have also been based on an improved understanding of the cellular interactions required to induce a specific anti-tumour immune response. Consequently, a number of cancer vaccines have entered clinical trials. Targeting broad-spectrum tumour-associated antigens has emerged as a strategy to lower the risk of tumour escape due to the loss of specific nominal antigen. Amongst the most challenging of tumour-associated antigens to which to target in active specific immunotherapy applications are carbohydrate antigens. As carbohydrates are intrinsically T-cell-independent antigens, more novel approaches are perhaps needed to drive specific-T-cell-dependent immune responses to carbohydrate antigens. In this context peptide mimetics of core structures of tumour-associated carbohydrate antigens might be developed to augment immune responses to these broad-spectrum antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号