首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP site-directed inhibitors that can target individual kinases are powerful tools for use in signal transduction research, all the more so in the case of a pleiotropic, constitutively active protein kinase such as CK2, which is not turned on in response to specific stimuli. By screening a library of more than 200 derivatives of natural polyphenolic compounds, we have identified 16 molecules which inhibit CK2 with IC(50) values of 相似文献   

2.
Death-associated protein kinase (DAPK) is a serine/threonine protein kinase implicated in diverse programmed cell death pathways. DAPK is a promising target protein for the treatment of ischemic diseases. We identified novel potent and selective DAPK inhibitors efficiently by structure-based virtual screening, then further developed the hit compounds. In this paper, we describe the development of the hit compounds and the structure–activity relationship studies of the DAPK inhibitors in detail, including calculation of the solvated interaction energy (SIE), and verification of selectivity using a kinase panel.  相似文献   

3.
Cancerous inhibitor of PP2A (CIP2A) is a novel human oncoprotein that inhibits PP2A, contributing to tumor aggressiveness in various cancers. Several studies have shown that downregulation of CIP2A by small molecules reduces PP2A-dependent phosphorylation of Akt and induces cell death. Here, a series of mono- and di-substituted quinazoline and pyrimidine derivatives based on the skeleton of erlotinib (an EGFR inhibitor) were synthesized and their bioactivities against hepatocellular carcinoma were evaluated. The di-substituted quinazoline and pyrimidine derivatives were more potent inhibitors of cancer-cell proliferation than the mono-substituted derivatives. In particular, compound 1 with chloride at position 2 of quinazoline was as potent as erlotinib in inducing cell death but no inhibition for EGFR activity. Further assays confirmed a correlation between cell death, and CIP2A and Akt inhibition by these derivatives. Among all the derivatives, compounds 19 and 22 showed the most potent antiproliferative activities and the strongest inhibition of CIP2A and p-Akt expression.  相似文献   

4.
Macroautophagy (hereafter autophagy) is a lysosomal catabolic pathway that controls cellular homeostasis and survival. It has recently emerged as an attractive target for the treatment of a variety of degenerative diseases and cancer. The targeting of autophagy has, however, been hampered by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes. Notably, the autophagy inhibitory effects of all three compounds were independent of their established kinase targets, i.e. ataxia telangiectasia mutated for KU55933, protein kinase C for Gö6976, and Janus kinase 3 for Jak3 inhibitor VI. Instead, we identified phosphatidylinositol 3-kinase (PtdIns3K) as a direct target of KU55933 and Gö6976. Importantly, and in contrast to the currently available inhibitors of autophagosome formation (e.g. 3-methyladenine), none of the three compounds inhibited the cell survival promoting class I phosphoinositide 3-kinase-Akt signaling at the concentrations required for effective autophagy inhibition. Accordingly, they proved to be valuable tools for investigations of autophagy-associated cell death and survival. Employing KU55399, we demonstrated that autophagy protects amino acid-starved cells against both apoptosis and necroptosis. Taken together, our data introduce new possibilities for the experimental study of autophagy and can form a basis for the development of clinically relevant autophagy inhibitors.  相似文献   

5.
Herein we describe the synthesis and properties of indeno[1,2-b]indole derivatives as a novel class of potent inhibitors of the human protein kinase CK2. A set of 19 compounds was obtained using a convenient and straightforward synthesis protocol. The compounds were tested for inhibition of human protein kinase CK2, which was recombinantly expressed in Escherichia coli. New inhibitors with IC(50) in the micro- and sub-micromolar range were identified. Compound 4b (5-isopropyl-7,8-dihydroindeno[1,2-b]indole-9,10(5H,6H)-dione) inhibited human CK2 with an IC(50) of 0.11 μM and did not significantly inhibit 22 other human protein kinases, suggesting selectivity towards CK2. ATP-competitive inhibition by compound 4b was shown and a K(i) of 0.06 μM was determined. Our findings indicate that indeno[1,2-b]indoles are a promising starting point for further development and optimization of human protein kinase CK2 inhibitors.  相似文献   

6.
Chemoresistance is a major obstacle in the clinical management of metastatic, castration-resistant prostate cancer (PCa). It is imperative to develop novel strategies to overcome chemoresistance and improve clinical outcomes in patients who have failed chemotherapy. Using a two-tier phenotypic screening platform, we identified bromocriptine mesylate as a potent and selective inhibitor of chemoresistant PCa cells. Bromocriptine effectively induced cell cycle arrest and activated apoptosis in chemoresistant PCa cells but not in chemoresponsive PCa cells. RNA-seq analyses revealed that bromocriptine affected a subset of genes implicated in the regulation of the cell cycle, DNA repair, and cell death. Interestingly, approximately one-third (50/157) of the differentially expressed genes affected by bromocriptine overlapped with known p53-p21- retinoblastoma protein (RB) target genes. At the protein level, bromocriptine increased the expression of dopamine D2 receptor (DRD2) and affected several classical and non-classical dopamine receptor signal pathways in chemoresistant PCa cells, including adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa B  (NF-κB), enhancer of zeste homolog 2 (EZH2), and survivin. As a monotherapy, bromocriptine treatment at 15 mg/kg, three times per week, via the intraperitoneal route significantly inhibited the skeletal growth of chemoresistant C4-2B-TaxR xenografts in athymic nude mice. In summary, these results provided the first preclinical evidence that bromocriptine is a selective and effective inhibitor of chemoresistant PCa. Due to its favorable clinical safety profiles, bromocriptine could be rapidly tested in PCa patients and repurposed as a novel subtype-specific treatment to overcome chemoresistance.  相似文献   

7.
Macrocyclic compounds bearing a 2-amino-6-arylpyrimidine moiety were identified as potent heat shock protein 90 (Hsp90) inhibitors by modification of 2-amino-6-aryltriazine derivative (CH5015765). We employed a macrocyclic structure as a skeleton of new inhibitors to mimic the geldanamycin-Hsp90 interactions. Among the identified inhibitors, CH5164840 showed high binding affinity for N-terminal Hsp90α (K(d)=0.52nM) and strong anti-proliferative activity against human cancer cell lines (HCT116 IC(50)=0.15μM, NCI-N87 IC(50)=0.066μM). CH5164840 displayed high oral bioavailability in mice (F=70.8%) and potent antitumor efficacy in a HCT116 human colorectal cancer xenograft model (tumor growth inhibition=83%).  相似文献   

8.
Michael adducts of ascorbic acid with alpha,beta-unsaturated carbonyl compounds have been shown to be potent inhibitors of protein phosphatase 1 (PP1) without affecting cell viability at the respective concentrations. Here we were able to show that higher concentrations can partially inhibit PP2A activity and concomitantly induce apoptotic cell death. A nitrostyrene adduct of ascorbic acid proved to be a more potent and effective inhibitor of PP2A as well as a stronger inducer of apoptosis. These adducts only slightly lost their cytotoxic potential in multidrug resistant cells that were 10-fold less sensitive to apoptosis induction by okadaic acid and vinblastine.  相似文献   

9.
Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.Subject terms: Cell death, Molecular biology  相似文献   

10.
Novel, non-arginine based compounds have been identified as potent inhibitors of nitric oxide synthase (NOS). Members of the isothiourea and mercapto-alkylguanidine classes have generated much interest, as some members of these classes show selectivity towards the inducible isoform of NOS (iNOS), which plays a role in inflammation and shock. Here we compared the effect of a number of these compounds as well as L-arginine based NOS inhibitor reference compounds on macrophage-derived and liver arginase and macrophage iNOS activities. From the nonarginine based NOS inhibitors studied only S-aminoethyl-isothiourea (AETU) caused a slight inhibition of arginase activity. This inhibition was kinetically competitive and due to the rearrangement of AETU to mercapto-ethylguanidine (MEG). The weak inhibitory effect of non-arginine based iNOS inhibitors on arginase activity further supports the view that such compounds may be of practical use for inhibition of NO production in cells simultaneously expressing iNOS and arginase.  相似文献   

11.
The effectiveness of the potent antifungal drug fluconazole is being compromised by the rise of drug-resistant fungal pathogens. While inhibition of Hsp90 or calcineurin can reverse drug resistance in Candida, such inhibitors also impair the homologous human host protein and fungal-selective chemosensitizers remain rare. The MLPCN library was screened to identify compounds that selectively reverse fluconazole resistance in a Candida albicans clinical isolate, while having no antifungal activity when administered as a single agent. A piperazinyl quinoline was identified as a new small-molecule probe (ML189) satisfying these criteria.  相似文献   

12.
S1P (sphingosine 1-phosphate) is a signalling molecule involved in a host of cellular and physiological functions, most notably cell survival and migration. S1P, which signals via a set of five G-protein-coupled receptors (S1P1-S1P5), is formed by the action of two SphKs (sphingosine kinases) from Sph (sphingosine). Interfering RNA strategies and SphK1 (sphingosine kinase type 1)-null (Sphk1-/-) mouse studies implicate SphK1 in multiple signalling cascades, yet there is a paucity of potent and selective SphK1 inhibitors necessary to evaluate the effects of rapid onset inhibition of this enzyme. We have identified a set of submicromolar amidine-based SphK1 inhibitors and report using a pair of these compounds to probe the cellular and physiological functions of SphK1. In so doing, we demonstrate that our inhibitors effectively lower S1P levels in cell-based assays, but we have been unable to correlate SphK1 inhibition with changes in cell survival. However, SphK1 inhibition did diminish EGF (epidermal growth factor)-driven increases in S1P levels and Akt (also known as protein kinase B)/ERK (extracellular-signal-regulated kinase) phosphorylation. Finally, administration of the SphK1 inhibitor to wild-type, but not Sphk1-/-, mice resulted in a rapid decrease in blood S1P levels indicating that circulating S1P is rapidly turned over.  相似文献   

13.
In this paper novel isoindolines substituted with cyano and amidino benzimidazoles and benzothiazoles were synthesized as new potential anti-cancer agents. The new structures were evaluated for antiproliferative activity, cell cycle changes, cell death, as well as DNA binding and topoisomerase inhibition properties on selected compounds. Results showed that all tested compounds exerted antitumor activity, especially amidinobenzothiazole and amidinobenzimidazole substituted isoindolin-1-ones and benzimidazole substituted 1-iminoisoindoline that showed antiproliferative effect in the submicromolar range. Moreover, the DNA-binding properties of selected compounds were evaluated by biophysical and biochemical approaches including thermal denaturation studies, circular dichroism spectra analyses and topoisomerase I/II inhibition assays and results identified some of them as strong DNA ligands, harboring or not additional topoisomerase II inhibition and able to locate in the nucleus as determined by fluorescence microscopy. In conclusion, we evidenced novel cyano- and amidino-substituted isoindolines coupled with benzimidazoles and benzothiazoles as topoisomerase inhibitors and/or DNA binding compounds with potent antitumor activities.  相似文献   

14.
Protein geranylgeranylation is critical for the function of a number of proteins such as RhoA, Rac, and Rab. Protein geranylgeranyltransferase I (GGTase-I) and Rab geranylgeranyltransferase (RabGGTase) catalyze these modifications. In this work, we first describe the identification and characterization of small molecule inhibitors of GGTase-I (GGTI) with two novel scaffolds from a library consisting of allenoate-derived compounds. These compounds exhibit specific inhibition of GGTase-I and act by competing with a substrate protein. Derivatization of a carboxylic acid emanating from the core ring of one of the GGTI compounds dramatically improves their cellular activity. The improved GGTI compounds inhibit proliferation of a variety of human cancer cell lines and cause G(1) cell cycle arrest and induction of p21(CIP1/WAF1). We also report the identification of novel small molecule inhibitors of RabGGTase. These compounds were identified first by screening our GGTI compounds for those that also exhibited RabGGTase inhibition. This led to the discovery of a common structural feature for RabGGTase inhibitors: the presence of a characteristic six-atom aliphatic tail attached to the penta-substituted pyrrolidine core. Further screening led to the identification of compounds with preferential inhibition of RabGGTase. These compounds inhibit RabGGTase activity by competing with the substrate protein. These novel compounds may provide valuable reagents to study protein geranylgeranylation.  相似文献   

15.
Ovarian cancer is the leading cause of death from gynecological cancer. The anti-apoptotic protein Bcl-xL is frequently overexpressed in ovarian carcinoma which correlates with chemotherapy resistance. It has been demonstrated that Bcl-xL cooperates with another anti-apoptotic protein, Mcl-1, to protect ovarian cancer cells against apoptosis, and that their concomitant inhibition induces massive cell death. Here, we examined the interest of ABT-737, a potent BH3-mimetic molecule targeting Bcl-xL, both alone and in combination with Mcl-1 modulators, in ovarian cancer cell lines. As a single agent, ABT-737 was ineffective at promoting cell death in the four cell lines we tested in vitro. However, the specific inhibition of Mcl-1 by siRNA dramatically increased the sensitivity of chemoresistant cells to ABT-737. Platinum compounds also sensitize to ABT-737 by dose-dependently decreasing Mcl-1 expression or by increasing the expression of pro-apoptotic BH3-only proteins Noxa and, to a lower extent, Bim. Furthermore, we demonstrated that Noxa accumulation was involved in apoptosis occurring in response to the combination of ABT-737 and platinum compounds, since cells were protected from apoptosis by its silencing. Moreover, the combination was also highly cytotoxic ex vivo in sliced SKOV3 tumor nodes. However we observed in these slices a strong basal expression of Noxa and apoptotic cell death in response to ABT-737 alone. Therefore, we have revealed that the modulation of the Mcl-1/Noxa axis by platinum compounds results in a strong sensitization of chemoresistant ovarian carcinoma cells to ABT-737, which could constitute a promising therapeutic in these cancers.  相似文献   

16.
17.
Verrucosidin (VCD) belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78) expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD’s anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose), but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin). However, VCD’s strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin) might act in a similar GRP78-independent fashion will be discussed.  相似文献   

18.
19.
Arylstibonates structurally resemble phosphotyrosine side chains in proteins and here we addressed the ability of such compounds to act as inhibitors of a panel of mammalian tyrosine and dual-specificity phosphatases. Two arylstibonates both possessing a carboxylate side chain were identified as potent inhibitors of the protein tyrosine phosphatase PTP-ß. In addition, they inhibited the dual-specificity, cell cycle regulatory phosphatases Cdc25a and Cdc25b with sub-micromolar potency. However, the Cdc25c phosphatase was not affected demonstrating that arylstibonates may be viable leads from which to develop isoform specific Cdc25 inhibitors.  相似文献   

20.
Dopamine agonists such as bromocriptine and cabergoline have been successfully used in the treatment of pituitary prolactinomas and other neuroendocrine tumors. However, their therapeutic mechanisms are not fully understood. In this study we demonstrated that DRD5 (dopamine receptor D5) agonists were potent inhibitors of pituitary tumor growth. We further found that DRD5 activation increased production of reactive oxygen species (ROS), inhibited the MTOR pathway, induced macroautophagy/autophagy, and led to autophagic cell death (ACD) in vitro and in vivo. In addition, DRD5 protein was highly expressed in the majority of human pituitary adenomas, and treatment of different human pituitary tumor cell cultures with the DRD5 agonist SKF83959 resulted in growth suppression, and the efficacy was correlated with the expression levels of DRD5 in the tumors. Furthermore, we found that DRD5 was expressed in other human cancer cells such as glioblastomas, colon cancer, and gastric cancer. DRD5 activation in these cell lines suppressed their growth, inhibited MTOR activity, and induced autophagy. Finally, in vivo SKF83959 also inhibited human gastric cancer cell growth in nude mice. Our studies revealed novel mechanisms for the tumor suppressive effects of DRD5 agonists, and suggested a potential use of DRD5 agonists as a novel therapeutic approach in the treatment of different human tumors and cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号