首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pit organs of elasmobranchs (sharks, skates and rays) are free neuromasts of the mechanosensory lateral line system. Pit organs, however, appear to have some structural differences from the free neuromasts of bony fishes and amphibians. In this study, the morphology of pit organs was investigated by scanning electron microscopy in six shark and three ray species. In each species, pit organs contained typical lateral line hair cells with apical stereovilli of different lengths arranged in an “organ‐pipe” configuration. Supporting cells also bore numerous apical microvilli taller than those observed in other vertebrate lateral line organs. Pit organs were either covered by overlapping denticles, located in open grooves bordered by denticles, or in grooves without associated denticles. The possible functional implications of these morphological features, including modification of water flow and sensory filtering properties, are discussed. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Passive electroreception is a widespread sense in fishes and amphibians, but in mammals this sensory ability has previously only been shown in monotremes. While the electroreceptors in fish and amphibians evolved from mechanosensory lateral line organs, those of monotremes are based on cutaneous glands innervated by trigeminal nerves. Electroreceptors evolved from other structures or in other taxa were unknown to date. Here we show that the hairless vibrissal crypts on the rostrum of the Guiana dolphin (Sotalia guianensis), structures originally associated with the mammalian whiskers, serve as electroreceptors. Histological investigations revealed that the vibrissal crypts possess a well-innervated ampullary structure reminiscent of ampullary electroreceptors in other species. Psychophysical experiments with a male Guiana dolphin determined a sensory detection threshold for weak electric fields of 4.6 μV cm(-1), which is comparable to the sensitivity of electroreceptors in platypuses. Our results show that electroreceptors can evolve from a mechanosensory organ that nearly all mammals possess and suggest the discovery of this kind of electroreception in more species, especially those with an aquatic or semi-aquatic lifestyle.  相似文献   

3.
One of the most important decisions any female has to make is selecting a mate. In many animals, this involves a strong visual component, but in cave‐dwelling fishes, mate preferences have to be exercised in darkness. In a cave‐dwelling Poeciliid fish, the cave molly (Poecilia mexicana), visual mate choice is still possible because they have functional, albeit reduced eyes. In a previous laboratory study, it was documented that females prefer larger males in light and in darkness. In the present study, we investigated the role of the mechanosensory lateral line in this mate preference. We temporarily knocked out the lateral line using antibiotics. We found that even in the functional absence of the lateral line, females showed a clear preference for larger males, indicating that the lateral line is not crucial for mate choice. This points toward a strong role of chemical communication in cave molly mate choice.  相似文献   

4.
The dendrite of the sensory neuron is surrounded by support cells and is composed of two specialized compartments: the inner segment and the sensory cilium. How the sensory dendrite is formed and maintained is not well understood. Hook-related proteins (HkRP) like Girdin, DAPLE, and Gipie are actin-binding proteins, implicated in actin organization and in cell motility. Here, we show that the Drosophila melanogaster single member of the Hook-related protein family, Girdin, is essential for sensory dendrite formation and function. Mutations in girdin were identified during a screen for fly mutants with no mechanosensory function. Physiological, morphological, and ultrastructural studies of girdin mutant flies indicate that the mechanosensory neurons innervating external sensory organs (bristles) initially form a ciliated dendrite that degenerates shortly after, followed by the clustering of their cell bodies. Importantly, we observed that Girdin is expressed transiently during dendrite morphogenesis in three previously unidentified actin-based structures surrounding the inner segment tip and the sensory cilium. These actin structures are largely missing in girdin mutant. Defects in cilia are observed in other sensory organs such as those mediating olfaction and taste, suggesting that Girdin has a general role in forming sensory dendrites in Drosophila. These suggest that Girdin functions temporarily within the sensory organ and that this function is essential for the formation of the sensory dendrites via actin structures.  相似文献   

5.
The evolutionary forces driving the reduction of eyes and pigmentation in cave-adapted animals are unknown; Darwin famously questioned the role of natural selection in eye loss in cave fishes: "As it is difficult to imagine that eyes, although useless, could be in any way injurious to animals living in darkness, I attribute their loss wholly to disuse"[1]. We studied the genetics of eye and pigmentation regression in the Mexican cave tetra, Astyanax mexicanus, by mapping and quantitative trait loci (QTL) analysis. We also mapped QTL for the putatively constructive traits of jaw size, tooth number, and numbers of taste buds. The data suggest that eyes and pigmentation regressed through different mechanisms. Cave alleles at every eye or lens QTL we detected caused size reductions, consistent with evolution by natural selection but not with drift. QTL polarities for melanophore number were mixed, however, consistent with genetic drift. Arguments against a role for selection in the regression of cave-fish eyes cited the insignificant cost of their development [2, 3], but we argue that the energetic cost of their maintenance is sufficiently high for eyes to be detrimental in the cave environment. Regression can be caused either by selection or drift.  相似文献   

6.
《Journal of morphology》2017,278(1):4-28
The laterosensory system is a mechanosensory modality involved in many aspects of fish biology and behavior. Laterosensory perception may be crucial for individual survival, especially in habitats where other sensory modalities are generally useless, such as the permanently aphotic subterranean environment. In the present study, we describe the laterosensory canal system of epigean and subterranean species of the genus Ituglanis (Siluriformes: Trichomycteridae). With seven independent colonizations of the subterranean environment in a limited geographical range coupled with a high diversity of epigean forms, the genus is an excellent model for the study of morphological specialization to hypogean life. The comparison between epigean and subterranean species reveals a trend toward reduction of the laterosensory canal system in the subterranean species, coupled with higher intraspecific variability and asymmetry. This trend is mirrored in other subterranean fishes and in species living in different confined spaces, like the interstitial environment. Therefore, we propose that the reduction of the laterosensory canal system should be regarded as a troglomorphic (= cave‐related) character for subterranean fishes. We also comment about the patterns of the laterosensory canal system in trichomycterids and use the diversity of this system among species of Ituglanis to infer phylogenetic relationships within the genus. J. Morphol. 278:4–28, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   

7.
The correlation of the origin of teeth with jaws in vertebrate history has recently been challenged with an alternative to the canonical view of teeth deriving from separate skin denticles. This alternative proposes that organized denticle whorls on the pharyngeal (gill) arches in the fossil jawless fish Loganellia are precursors to tooth families developing from a dental lamina along the jaw, such as those occurring in sharks, acanthodians, and bony fishes. This not only indicates that homologs of tooth families were present, but also illustrates that they possessed the relevant developmental controls, prior to the evolution of jaws. However, in the Placodermi, a phylogenetically basal group of jawed fishes, the state of pharyngeal denticles is poorly known, tooth whorls are absent, and the presence of teeth homologous to those in extant jawed fishes (Chondrichthyes + Osteichthyes) is controversial. Thus, placoderms would seem to provide little evidence for the early evolution of dentitions, or of denticle whorls, or tooth families, at the base of the clade of jawed fishes. However, organized denticles do occur at the rear of the placoderm gill chamber, but are associated with the postbranchial lamina of the anterior trunkshield, assumed to be part of the dermal cover. Significantly, these denticles have a different organization and morphology relative to the external dermal trunkshield tubercles. We propose that they represent a denticulate part of the visceral skeleton, under the influence of pharyngeal patterning controls comparable to those for pharyngeal denticles in other jawed vertebrates and Loganellia.  相似文献   

8.
Genetic variabilities in four cave and eight surface species of balitorid freshwater fishes from Thailand were assessed using random amplified polymorphic DNA (RAPD). Cave species have consistently lower RAPD variation than surface species and it is hypothesized that this difference is a function of reduced population size in cave fishes. Indices of nucleotide diversity (pi) were calculated from the RAPD data and are four to five times higher for the surface species than the cave species: 6.4 x 10-3 vs. 1.4 x 10-3. The pi-values for cave fishes are significantly lower than those for surface balitorids and those measured in other species using RAPD/amplified fragment length polymorphism data.  相似文献   

9.
Sensory processing of water currents by fishes   总被引:2,自引:0,他引:2  
Water currents are extremely important in the aquatic environment and play a very significant role in the lives of fishes. Sensory processing of water currents involves a number of sensory modalities including the inner ear, vision, tactile sense and the mechanosensory lateral line. The inner ear will detect whole-body accelerations generated by changes in flow, or by turbulence, whereas visual and tactile inputs will signal translational movement with respect to an external visual or tactile reference frame. The superficial neuromasts of the mechanosensory lateral line detect flow over the surface of the body and have the appropriate anatomical distribution and physiological properties to signal the strength and the direction of flow and, hence, contribute to the detection of regional differences in flow over different parts of the body.  相似文献   

10.
A century has passed since the discovery of the paratympanic organ (PTO), a mechanoreceptive sense organ in the middle ear of birds and other tetrapods. This luminal organ contains a sensory epithelium with typical mechanosensory hair cells and may function as a barometer and altimeter. The organ is arguably the most neglected sense organ in living tetrapods. The PTO is believed to be homologous to a lateral line sense organ, the spiracular sense organ of nonteleostean fishes. Our review summarizes the current state of knowledge of the PTO and draws attention to the astounding lack of information about the unique and largely unexplored sensory modality of barometric perception.  相似文献   

11.
Vertebrate skin appendages are incredibly diverse. This diversity, which includes structures such as scales, feathers, and hair, likely evolved from a shared anatomical placode, suggesting broad conservation of the early development of these organs. Some of the earliest known skin appendages are dentine and enamel-rich tooth-like structures, collectively known as odontodes. These appendages evolved over 450 million years ago. Elasmobranchs (sharks, skates, and rays) have retained these ancient skin appendages in the form of both dermal denticles (scales) and oral teeth. Despite our knowledge of denticle function in adult sharks, our understanding of their development and morphogenesis is less advanced. Even though denticles in sharks appear structurally similar to oral teeth, there has been limited data directly comparing the molecular development of these distinct elements. Here, we chart the development of denticles in the embryonic small-spotted catshark (Scyliorhinus canicula) and characterize the expression of conserved genes known to mediate dental development. We find that shark denticle development shares a vast gene expression signature with developing teeth. However, denticles have restricted regenerative potential, as they lack a sox2+ stem cell niche associated with the maintenance of a dental lamina, an essential requirement for continuous tooth replacement. We compare developing denticles to other skin appendages, including both sensory skin appendages and avian feathers. This reveals that denticles are not only tooth-like in structure, but that they also share an ancient developmental gene set that is likely common to all epidermal appendages.  相似文献   

12.
The electrosensory and mechanosensory lateral line systems of fish exhibit many common features in their structural and functional organization, both at the sensory periphery as well as in central processing pathways. These two sensory systems also appear to play similar roles in many behavioral tasks such as prey capture, orientation with respect to external environmental cues, navigation in low-light conditions, and mediation of interactions with nearby animals. In this paper, we briefly review key morphological, physiological, and behavioral aspects of these two closely related sensory systems. We present arguments that the information processing demands associated with spatial processing are likely to be quite similar, due largely to the spatial organization of both systems and the predominantly dipolar nature of many electrosensory and mechanosensory stimulus fields. Demands associated with temporal processing may be quite different, however, due primarily to differences in the physical bases of electrosensory and mechanosensory stimuli (e.g. speed of transmission). With a better sense of the information processing requirements, we turn our attention to an analysis of the functional organization of the associated first-order sensory nuclei in the hindbrain, including the medial octavolateral nucleus (MON), dorsal octavolateral nucleus (DON), and electrosensory lateral line lobe (ELL). One common feature of these systems is a set of neural mechanisms for improving signal-to-noise ratios, including mechanisms for adaptive suppression of reafferent signals. This comparative analysis provides new insights into how the nervous system extracts biologically significant information from dipolar stimulus fields in order to solve a variety of behaviorally relevant problems faced by aquatic animals.  相似文献   

13.
Quantitative aspects of regressive evolution – demonstrated by the reduction of the eyes in cave fishes According to our present understanding, the eyes of cave fishes are no longer subject to a stabilizing selection. Because of a strong mutation pressure in the destructive direction, this leads to a continual enrichment of elimination mutants and thereby to a progressive reduction of the eyes after separation of a cave population. Obviously a natural selection process does not play a significant role in the reduction of the eyes in cave fishes. Based on these findings, the degeneration process can be characterized in detail, especially concerning its course and duration.  相似文献   

14.
Dermal denticles are unique tooth-like structures embedded in the skin of sharks and rays that protect them from predators and ectoparasites, reduce mechanical abrasion and possibly minimize swimming-induced drag. Here, we show that juvenile lesser spotted dogfish (Scyliorhinus canicula) also use this body armour to anchor food items near their tail so that bite-sized pieces can be torn away by rapid jaw and head movements. This scale-rasp behaviour is novel among fishes and suggests a new role for skin in the feeding ecology of sharks. Scale rasping may be important ecologically because it could function to increase the dietary breadth and growth potential of juveniles.  相似文献   

15.
The cave bear, Ursus spelaeus, represents one of the most frequently found paleontological remains from the Pleistocene in Europe. The species has always been confined to Europe and was contemporary with the brown bear, Ursus arctos. Relationships between the cave bear and the two lineages of brown bears defined in Europe, as well as the origins of the two species, remain controversial, mainly due to the wide morphological diversity of the fossil remains, which makes interpretation difficult [1, 2]. Sequence analysis of ancient DNA is a useful tool for resolving such problems because it provides an independent source of data [3]. We previously amplified a short DNA fragment of the mitochondrial DNA control region (mt control region) of a 40,000-year-old Ursus spelaeus sample [4]. In this paper, we describe the DNA analysis of two mtDNA regions, the control region and the cytochrome b gene. Control region sequences were obtained from ten samples of cave bears ranging from 130,000 to 20,000 years BP, and one particularly well-conserved sample gave a complete cyt b sequence. Our data demonstrate that cave bears split largely before the lineages of brown bears around 1.2 million years ago. Given its abundance, its wide distribution in space and time, and its large morphological diversity, the cave bear is a promising model for direct observation of the evolution of sequences throughout time, extinction periods, and the differentiation of populations shaped by climatic fluctuations during the Pleistocene.  相似文献   

16.
17.
ATP contributes to mechanosensory transduction in the rat colorectum. P2X3 receptors are present on dorsal root ganglia (DRG) neurons that supply this area of the gut. Previous studies have shown an increased role for ATP in inflamed tissues. We aimed to investigate whether an increased purinergic component exists during mechanosensory transduction in a rat model of colitis. An in vitro rat colorectal preparation was used to investigate whether distension increased ATP release and to evaluate the role of purinergic antagonists in distension-evoked sensory discharges in the pelvic nerve in normal and colitis preparations. DRG neuron purinoceptors were also studied. Distension-evoked responses in the colitis model were attenuated to a significantly greater extent by 2',3'-O-trinitrophenyl-ATP and pyridoxyl 5-phosphate 6-azophenyl-2',4'-disulfonic acid. Inflammation caused augmented distension-evoked sensory nerve excitation after application of ATP and alpha,beta-methylene ATP. Single-fiber analysis confirmed that mean firing per unit was increased. Distension-evoked increases in ATP release from epithelial cells were substantially higher. The number of DRG neurons responding to ATP and the number of those staining for the P2X3 receptor, particularly those containing calcitonin gene-related peptide, were increased. Adenosine, after ectoenzymatic breakdown of ATP, is involved to a lesser degree in the longer-lasting distension-evoked sensory discharge, suggesting reduced ATPase activity. It was therefore concluded that ATP has an enhanced role in mechanosensory transduction in the inflamed rat colorectum. The underlying mechanisms appear to involve increased distension-evoked release of ATP as well as an increase in the number of DRG neurons supplying the colorectum expressing P2X3 receptors, especially those containing calcitonin gene-related peptide.  相似文献   

18.
The lateral line system of fishes and amphibians comprises two ancient sensory systems: mechanoreception and electroreception. Electroreception is found in all major vertebrate groups (i.e. jawless fishes, cartilaginous fishes, and bony fishes); however, it was lost in several groups including anuran amphibians (frogs) and amniotes (reptiles, birds, and mammals), as well as in the lineage leading to the neopterygian clade of bony fishes (bowfins, gars, and teleosts). Electroreception is mediated by modified “hair cells,” which are collected in ampullary organs that flank lines of mechanosensory hair cell containing neuromasts. In the axolotl (a urodele amphibian), grafting and ablation studies have shown a lateral line placode origin for both mechanosensory neuromasts and electrosensory ampullary organs (and the neurons that innervate them). However, little is known at the molecular level about the development of the amphibian lateral line system in general and electrosensory ampullary organs in particular. Previously, we identified Eya4 as a marker for lateral line (and otic) placodes, neuromasts, and ampullary organs in a shark (a cartilaginous fish) and a paddlefish (a basal ray‐finned fish). Here, we show that Eya4 is similarly expressed during otic and lateral line placode development in the axolotl (a representative of the lobe‐finned fish clade). Furthermore, Eya4 expression is specifically restricted to hair cells in both neuromasts and ampullary organs, as identified by coexpression with the calcium‐buffering protein Parvalbumin3. As well as identifying new molecular markers for amphibian mechanosensory and electrosensory hair cells, these data demonstrate that Eya4 is a conserved marker for lateral line placodes and their derivatives in all jawed vertebrates.  相似文献   

19.
Somatosensory neurons in teleosts and amphibians are sensitive to thermal, mechanical, or nociceptive stimuli [1, 2]. The two main types of such cells in zebrafish--Rohon-Beard and trigeminal neurons--have served as models for neural development [3-6], but little is known about how they encode tactile stimuli. The hindbrain networks that transduce somatosensory stimuli into a motor output encode information by using very few spikes in a small number of cells [7], but it is unclear whether activity in the primary receptor neurons is similarly efficient. To address this question, we manipulated the activity of zebrafish neurons with the light-activated cation channel, Channelrhodopsin-2 (ChR2) [8, 9]. We found that photoactivation of ChR2 in genetically defined populations of somatosensory neurons triggered escape behaviors in 24-hr-old zebrafish. Electrophysiological recordings from ChR2-positive trigeminal neurons in intact fish revealed that these cells have extremely low rates of spontaneous activity and can be induced to fire by brief pulses of blue light. Using this technique, we find that even a single action potential in a single sensory neuron was at times sufficient to evoke an escape behavior. These results establish ChR2 as a powerful tool for the manipulation of neural activity in zebrafish and reveal a degree of efficiency in coding that has not been found in primary sensory neurons.  相似文献   

20.
Gaze following in human infants depends on communicative signals   总被引:1,自引:0,他引:1  
Humans are extremely sensitive to ostensive signals, like eye contact or having their name called, that indicate someone's communicative intention toward them [1-3]. Infants also pay attention to these signals [4-6], but it is unknown whether they appreciate their significance in the initiation of communicative acts. In two experiments, we employed video presentation of an actor turning toward one of two objects and recorded infants' gaze-following behavior [7-13] with eye-tracking techniques [11, 12]. We found that 6-month-old infants followed the adult's gaze (a potential communicative-referential signal) toward an object only when such an act is preceded by ostensive cues such as direct gaze (experiment 1) and infant-directed speech (experiment 2). Such a link between the presence of ostensive signals and gaze following suggests that this behavior serves a functional role in assisting infants to effectively respond to referential communication directed to them. Whereas gaze following in many nonhuman species supports social information gathering [14-18], in humans it initially appears to reflect the expectation of a more active, communicative role from the information source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号