首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sexual selection in general, and sexual conflict in particular, should affect the evolution of lifespan and aging. Using experimental evolution, we tested whether removal of sexual selection leads to the evolution of accelerated or decelerated senescence. We subjected replicated populations of the seed beetle Callosobruchus maculatus to either of two selection regimes for 35 generations. These regimes either allowed (polygamy) or removed the potential (monogamy) for sexual selection to operate. To test for the evolution of intrinsic differences between the two selection regimes, we assayed longevity in replicate cohorts of virgin females and males. Virgin females from populations evolving under sexual selection had reduced lifespan as predicted by the sexual conflict theory of aging. However, this reduction was due to increased baseline mortality rather than an increase in age-specific mortality rates with age. We discuss these findings in light of other data from this model system and suggest that system-specific idiosyncrasies may often modulate the general effects of male–female coevolution on the evolution of aging.  相似文献   

2.
Because homologous traits of males and females are likely to have a common genetic basis, sex-specific selection (often resulting from sexual selection on one sex) may generate an evolutionary tug-of-war known as intralocus sexual conflict, which will constrain the adaptive divergence of the sexes. Theory suggests that intralocus sexual conflict can be mitigated through reduction of the intersexual genetic correlation (rMF), predicting negative covariation between rMF and sexual dimorphism. In addition, recent work showed that selection should favor reduced expression of alleles inherited from the opposite-sex parent (intersexual inheritance) in traits subject to intralocus sexual conflict. For traits under sexual selection in males, this should be manifested either in reduced maternal heritability or, when conflict is severe, in reduced heritability through the opposite-sex parent in offspring of both sexes. However, because we do not know how far these hypothesized evolutionary responses can actually proceed, the importance of intralocus sexual conflict as a long-term constraint on adaptive evolution remains unclear. In this study, we investigated the genetic architecture of sexual and nonsexual morphological traits in Prochyliza xanthostoma. The lowest rMF and greatest dimorphism were exhibited by two sexual traits (head length and antenna length) and, among all traits, the degree of sexual dimorphism was correlated negatively with rMF. Moreover, sexual traits exhibited reduced maternal heritabilities, and the most strongly dimorphic sexual trait (antenna length) was heritable only through the same-sex parent in offspring of both sexes. Our results support theory and suggest that intralocus sexual conflict can be resolved substantially by genomic adaptation. Further work is required to identify the proximate mechanisms underlying these patterns.  相似文献   

3.
Sexual conflict has extremely important consequences for various evolutionary processes including its effect on local adaptation and extinction probability during environmental change. The awareness that the intensity and dynamics of sexual conflict is highly dependent on the ecological setting of a population has grown in recent years, but much work is yet to be done. Here, we review progress in our understanding of the ecology of sexual conflict and how the environmental sensitivity of such conflict feeds back into population adaptivity and demography, which, in turn, determine a population's chances of surviving a sudden environmental change. We link two possible forms of sexual conflict – intralocus and interlocus sexual conflict – in an environmental context and identify major gaps in our knowledge. These include sexual conflict responses to fluctuating and oscillating environmental changes and its influence on the interplay between interlocus and intralocus sexual conflict, among others. We also highlight the need to move our investigations into more natural settings and to investigate sexual conflict dynamics in wild populations.  相似文献   

4.
It is widely assumed that male sperm competitiveness evolves adaptively. However, recent studies have found a cytoplasmic genetic component to phenotypic variation in some sperm traits presumed important in sperm competition. As cytoplasmic genes are maternally transmitted, they cannot respond to selection on sperm and this constraint may affect the scope in which sperm competitiveness can evolve adaptively. We examined nuclear and cytoplasmic genetic contributions to sperm competitiveness, using populations of Callosobruchus maculatus carrying orthogonal combinations of nuclear and cytoplasmic lineages. Our design also enabled us to examine genetic contributions to female remating. We found that sperm competitiveness and remating are primarily encoded by nuclear genes. In particular, a male's sperm competitiveness phenotype was contingent on an interaction between the competing male genotypes. Furthermore, cytoplasmic effects were detected on remating but not sperm competitiveness, suggesting that cytoplasmic genes do not generally play a profound evolutionary role in sperm competition.  相似文献   

5.
Sexual conflict is increasingly recognized as a major force for evolutionary change and holds great potential for delineating variation in primate behavior and morphology. The goals of this review are to highlight the rapidly rising field of sexual conflict and the ongoing shift in our understanding of interactions between the sexes. We discuss the evidence for sexual conflict within the Order Primates, and assess how studies of primates have illuminated and can continue to increase our understanding of sexual conflict and sexual selection. Finally, we introduce a framework for understanding the behavioral, anatomical, and genetic expression of sexual conflict across primate mating systems and suggest directions for future research.  相似文献   

6.
Mating rate optima often differ between the sexes: males may increase their fitness by multiple mating, but for females multiple mating confers little benefit and can often be costly (especially in taxa without nuptial gifts or mala parental care). Sexually antagonistic evolution is thus expected in traits related to mating rates under sexual selection. This prediction has been tested by multiple studies that applied experimental evolution technique, which is a powerful tool to directly examine the evolutionary consequences of selection. Yet, the results so far only partly support the prediction. Here, we provide another example of experimental evolution of sexual selection, by applying it for the first time to the mating behaviour of a seed beetle Callsorobruchus chinensis. We found a lower remating rate in polygamy-line females than in monogamy-line (i.e. no sexual selection) females after 21 generations of selection. Polygamy-line females also showed a longer duration of first mating than monogamy-line females. We found no effect of male evolutionary lines on the remating rate or first mating duration. Though not consistent with the original prediction, the current and previous studies collectively suggest that the observed female-limited responses may be a norm, which is also consistent with the conceptual advances in the last two decades of the advantages and limitations of experimental evolution technique.  相似文献   

7.
Ageing evolves because the force of selection on traits declines with age but the proximate causes of ageing are incompletely understood. The ‘disposable soma’ theory of ageing (DST) upholds that competitive resource allocation between reproduction and somatic maintenance underpins the evolution of ageing and lifespan. In contrast, the developmental theory of ageing (DTA) suggests that organismal senescence is caused by suboptimal gene expression in adulthood. While the DST predicts the trade-off between reproduction and lifespan, the DTA predicts that age-specific optimization of gene expression can increase lifespan without reproduction costs. Here we investigated the consequences for lifespan, reproduction, egg size and individual fitness of early-life, adulthood and post-reproductive onset of RNAi knockdown of five ‘longevity’ genes involved in key biological processes in Caenorhabditis elegans. Downregulation of these genes in adulthood and/or during post-reproductive period increases lifespan, while we found limited evidence for a link between impaired reproduction and extended lifespan. Our findings demonstrate that suboptimal gene expression in adulthood often contributes to reduced lifespan directly rather than through competitive resource allocation between reproduction and somatic maintenance. Therefore, age-specific optimization of gene expression in evolutionarily conserved signalling pathways that regulate organismal life histories can increase lifespan without fitness costs.  相似文献   

8.
In animals, male reproduction is commonly a function of sexual attractiveness, based on the expression of sexually dimorphic traits that advertise genuinely the male's quality. Male performance may decline with age because physiological functions underlying sexual attractiveness may be affected by senescence. Here we show that a sexual signal (foot colour) declines with age, due probably to the deleterious effects of oxidative damage. We found that in the blue-footed booby Sula nebouxii foot colour during courtship was less attractive in senescent than in middle-aged males. In addition, we increased reactive oxygen species experimentally by immunizing males with lipopolysaccharide, a bacterial cell wall component that induces marked oxidative stress in animals. The immune system activation induced greater lipid peroxidation and invoked changes on colour expression (less attractive), particularly in senescent males. These results support the idea that oxidative stress affects reproductive senescence, and suggest that oxidative damage might be a proximal mechanism underlying age-reproductive patterns in long-lived animals.  相似文献   

9.
1. Sexual selection is a powerful evolutionary force that is hypothesised to play an important role in the evolution of lifespan. Here we test for the potential contribution of sexual selection to the rapid evolution of male lifespan in replicated laboratory populations of the seed beetle, Callosobruchus maculatus. 2. For 35 generations, newly hatched virgin male beetles from eight different populations were allowed to mate for 24 h and then discarded. Sexual selection was removed in half of these populations by enforcing random monogamy. 3. Classic theory predicts that because of sexual competition, males from sexually selected lines would have higher age‐specific mortality rates and shorter lifespan than males from monogamous lines. 4. Alternatively, condition‐dependent sexual selection may also favour genes that have positive pleiotropic effects on lifespan and ageing. 5. Males from all eight populations evolved shorter lifespans compared with the source population. However, there was no difference in lifespan between males from populations with or without sexual selection. Thus, sexual selection did not contribute to the evolution of male lifespan despite the fact that such evolution did occur in our study populations.  相似文献   

10.
性选择与性冲突是植物繁殖性状多样性及性系统演化的重要动力, 二者密切相关却又有所区别, 理解它们的作用机制及其影响对于植物繁殖生态学的研究具有重要意义。当前, 性选择与性冲突理论在植物繁殖生态学中的运用已取得长足进展, 但国内相关研究较少, 对该领域关注不够。因此, 该文对该领域的基本理论和研究进展进行了综述。首先, 阐述性选择与性冲突理论在植物研究中的发展及其运用基础; 其次, 分别从授粉前和授粉后两个阶段详细介绍性选择与性冲突在有花植物繁殖过程中的作用机制及其影响, 并指出环境因素对它们所产生的影响; 最后, 对当前研究存在的不足及该领域未来的研究方向进行总结和展望。希望以此增强人们对性选择和性冲突理论的认识, 促进其在植物繁殖生态学中的运用与发展。  相似文献   

11.
12.
Interfertile populations of the seed beetle Callosobruchus maculatus differ genetically in several behavioral, morphological, and life-history traits, including traits that affect the intensity of larval competition within seeds. Previous studies have suggested that this variation depends on differences in host size. I performed a selection experiment in which replicate beetle lines were either maintained on a small, ancestral host (mung bean) or switched to a larger, novel host (cowpea). After 40 generations, I estimated survival, development time, and adult mass on each host, both in the presence and absence of larval competition. The shift to cowpea substantially reduced body size; irrespective of rearing host, adults from the cowpea lines were more than 10% lighter than those from the mung bean lines. Switching to cowpea also improved survival and reduced development time on this host, but without decreasing performance on the ancestral host. The most striking effect of the shift to a larger host was a reduction in larval competitiveness. When two even-aged larvae co-existed within a seed, the probability that both survived to adult emergence was > or = 65% if larvae were from the cowpea lines but < or = 12% if they were from the mung bean lines. The adverse effects of competition on development time and adult mass were also less severe in the cowpea lines than in the mung bean lines. By rapidly evolving smaller size and reduced competitiveness, the cowpea lines converged toward populations chronically associated with cowpea. These results suggest that evolutionary trajectories can be predictable, and that host-specific selection can play a major role in the diversification of insect life histories. Because host shifts by small, endophagous insects are comparable to the colonization of new habitats, adaptive responses may often include traits (such as larval competitiveness) that are not directly related to host use.  相似文献   

13.
Some recent models suggest a new role for evolutionary arms races between males and females in sexual selection. Female resistance to males is proposed to be driven by the direct advantage to the female of avoiding male-imposed reductions in the number of offspring she can produce, rather than by the indirect advantage of selecting among possible sires for her offspring, as in some traditional models of sexual selection by female choice. This article uses the massive but hitherto under-utilized taxonomic literature on genitalic evolution to test, in a two-step process, whether such new models of arms races between males and females have been responsible for rapid divergent evolution of male genitalia. The test revolves around the prediction that 'new arms races' are less likely to occur in species in which females are largely or completely protected from unwanted sexual attentions from males (e.g. species which mate in leks or in male swarms, in which males attract females from a distance, or in which females initiate contact by attracting males from a distance). The multiple possible mechanical functions of male genitalia are summarized, and functions of male genitalic structures in 43 species in 21 families of Diptera are compiled. Functions associated with intromission and insemination (e.g. seizing and positioning the female appropriately, pushing past possible barriers within the female, orienting within the female to achieve sperm transfer), which are unlikely to be involved in new arms races when females are protected, are shown to be common (> 50 % of documented cases). This information is then used to generate the new arms race prediction: differences in genitalic form among congeneric species in which females are protected should be less common than differences among congeneric species in which females are vulnerable to harassment by males. This prediction was tested using a sample of 361 genera of insects and spiders. The prediction clearly failed, even when the data were adjusted to take into account several possible biases. Comparative analyses within particular taxonomic groups also failed to show the predicted trends, as did less extensive data on other non-genitalic male display traits. Arms races, as defined in some recent models, seem to have been less important in male-female coevolution of genitalic structures than has been suggested. By elimination, alternative interpretations, such as traditional female choice, which do not predict associations between female protection from harassment and rapid divergent evolution, are strengthened.  相似文献   

14.
15.
The prevalence of sexual conflict in nature, along with the potentially stochastic nature of the resulting coevolutionary trajectories, makes it an important driver of phenotypic divergence and speciation that can operate even in the absence of environmental differences. The majority of empirical work investigating sexual conflict's role in population divergence/speciation has therefore been done in uniform environments and any role of ecology has largely been ignored. However, theory suggests that natural selection can constrain phenotypes influenced by sexual conflict. We use replicate populations of Drosophila melanogaster adapted to alternative environments to test how ecology influences the evolution of male effects on female longevity. The extent to which males reduce female longevity, as well as female resistance to such harm, both evolved in association with adaptation to the different environments. Our results demonstrate that ecology plays a central role in shaping patterns of population divergence in traits under sexual conflict.  相似文献   

16.
17.
We tested mutation accumulation hypothesis for the evolution of senescence using short‐lived and long‐lived populations of the seed‐feeding beetle, Acanthoscelides obtectus (Say), obtained by selection on early‐ and late‐life for many generations. The expected consequence of the mutation accumulation hypothesis is that in short‐lived populations, where the force of natural selection is the strongest early in life, the late‐life fitness traits should decline due to genetic drift which increases the frequency of mutations with deleterious effects in later adult stages. Since it is unlikely that identical deleterious mutations will increase in several independent populations, hybrid vigor for late‐life fitness is expected in offspring obtained in crosses among populations selected for early‐life fitness traits. We tested longevity of both sexes, female fecundity and male reproductive behavior for hybrid vigor by comparing hybrid and nonhybrid short‐lived populations. Hybrid vigor was confirmed for male virility, mating speed and copulation duration, and longevity of both sexes at late ages. In contrast to males, the results on female fecundity in short‐lived populations did not support mutation accumulation as a genetic mechanism for the evolution of this trait. Contrary to the prediction of this hypothesis, male mating ability indices and female fecundity in long‐lived populations exhibited hybrid vigor at all assayed age classes. We demonstrate that nonhybrid long‐lived populations diverged randomly regarding female and male reproductive fitness, indicating that sexually antagonistic selection, when accompanied with genetic drift for female fecundity and male virility, might be responsible for overriding natural selection in the independently evolving long‐lived populations.  相似文献   

18.

Background  

Sex differences in lifespan are ubiquitous throughout the animal kingdom but the causes underlying this phenomenon remain poorly understood. Several explanations based on asymmetrical inheritance patterns (sex chromosomes or mitochondrial DNA) have been proposed, but these ideas have rarely been tested experimentally. Alternatively, sexual dimorphism in lifespan could result from sex-specific selection, caused by fundamental differences in how males and females optimize their fitness by allocating resources into current and future reproduction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号