首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemocyanin is a copper-containing respiratory protein that is widespread within the arthropod phylum. Among the Crustacea, hemocyanins are apparently restricted to the Malacostraca. While well-studied in Decapoda, no hemocyanin sequence has been known from the ’lower’ Malacostraca. The hemocyanin of the amphipod Gammarus roeseli is a hexamer that consists of at least five distinct subunits. The complete cDNA sequence of one subunit and a tentative partial sequence of another subunit have been determined. The complete G. roeseli hemocyanin subunit comprises 2,150 bp, which translates in a protein of 672 amino acids with a molecular mass of 76.3 kDa. Phylogenetic analyses show that, in contrast to previous assumptions, the amphipod hemocyanins do not belong to the α-type of crustacean hemocyanin subunits. Rather, amphipod hemocyanins split from the clade leading to α and γ-subunits most likely at the time of separation of peracarid and eucarid Crustacea about 300 million years ago. Molecular clock analyses further suggest that the divergence of β-type subunits and other crustacean hemocyanins occurred around 315 million years ago (MYA) in the malacostracan stemline, while α- and γ-type subunits separated 258 MYA, and pseudohemocyanins and γ-subunits 210 million years ago.  相似文献   

2.
In an attempt to isolate structural domains of arthropod hemocyanins and possibly to investigate their functional properties, we have undertaken proteolytic digestion experiments of isolated subunits from Panulirus interruptus and Limulus polyphemus oxy-hemocyanin. Satisfactory results have been obtained using trypsin at high concentration and short digestion times. Results show that, in the case of Panulirus hemocyanin, only subunit alpha is susceptible to trypsin digestion, but that proteolytic cleavage is associated with the loss of the copper-oxygen band; on the other hand, in the case of Limulus hemocyanin, four subunits (I, II, III and IV) show a significant susceptibility to trypsin, and their fragmentation takes place with preservation of the oxygen-binding capacity. A more detailed study of the digestion products of subunit IV from Limulus hemocyanin reveals that the proteolytic fragments keep together in a single non-covalent complex. Attempts to separate the native fragments result in the precipitation of the digestion products. Subunit IV of Limulus with proteolytic cuts binds O2 and CO with the same affinity as the native subunit, suggesting that the copper site is still preserved structurally and is functionally active in a 37 kDa trypsin-resistant domain.  相似文献   

3.
Hexapods possess a tracheal system that enables the transport of oxygen to the inner organs. Although respiratory proteins have been considered unnecessary in most Hexapoda for this reason, we recently showed the presence of a functional hemocyanin in the stonefly Perla marginata. Here we report the identification and molecular characterization of a hemocyanin from Zygentoma (Thysanura). We obtained the full length cDNA of two distinct subunit types from the firebrat Thermobia domestica, and partial sequences of the orthologs from the silverfish Lepisma saccharina. The native T. domestica hemocyanin subunits both consist of 658 amino acids, but a signal peptide for transmembrane transport is missing in subunit 2. In adult firebrats both hemocyanin subunits represent a substantial proportion of the total hemolymph proteins. Phylogenetic analyses show that the subunit types are orthologous to subunits 1 and 2 of the stonefly Perla marginata. We further identified and sequenced a hexamerin subunit from T. domestica (689 amino acids), which suggests an early emergence of this type of proteins in hexapod evolution. In contrast to most other hexamerins, it does not reveal a high content in phenylalanine and tyrosine, which may be interpreted that the accumulation of aromatic amino acids commenced later in hexamerin evolution. Molecular clock calculations using hexamerins suggest that the divergence of Zygentoma and Pterygota occurred around 387 million years ago, which is in excellent agreement with the available fossil record.  相似文献   

4.
P D Jeffrey 《Biochemistry》1979,18(12):2508-2513
Examination and measurement of electron micrographs of negatively stained hemocyanin molecules from Cherax destructor show that the predominant aggregated forms, the 16S and 24S components, are typical structures for arthropod hexamers and dodecamers, respectively. In Cherax hemocyanin the hexamers are formed from the monomeric (Mr congruent to 75,000) subunits, M1 and M2, while the dodecamers contain in addition a dimeric (Mr congruent to 150,000) subunit, M3'. Studies of the composition of solutions of the subunits M1 and m2 to which calcium ions have been added at pH 7.8 show that, under these conditions, reassembly occurs to particles indistinguishable from native hexamers. It is noteworthy that dodecamers are not seen since this confirms the previous suggestion that incorporation of the dimeric subunit in the assembly process is necessary for their formation. The results obtained from Cherax hemocyanin are related to those of previous structural studies of arthropod hemocyanins. In particular, the possible controlling role of certain specific subunits in arthropod hemocyanin oligomers containing more than one kind of subunit is illustrated with a model for the Cherax dodecamer, in which the dimeric subunit is shared between the two halves of the molecule.  相似文献   

5.
Structural and functional diversities of the subunits of Panulirus japonicus (spiny lobster) hemocyanin were investigated. The hemocyanin mostly exists as a hexamer in the native state. It was found that the hemocyanin is composed of three major subunits (Ib, II and III) and one minor subunit (Ia), which differ in N-terminal sequence. In the dissociated state, the major subunits (Ib, II and III) showed no or very small Bohr effects. The O2 affinity of the subunit III was about three times as high as those of the other two. The subunits could be reassociated into homogeneous and heterogeneous hexamers, which exhibited the cooperativity in O2 binding. The homohexamers were similar to each other in O2 affinity and the Bohr effect, though some differences were observed in the magnitude of the cooperativity. In particular, the subunit II homohexamer exhibited a high cooperativity, which was comparable to that of the native protein. The heterohexamers showed slightly higher O2 affinities and slightly lower cooperativity, as compared with the parent homohexamers. It was concluded that there is no essential difference among the three major subunits of P. japonicus hemocyanin in the O2 binding and assembly properties.  相似文献   

6.
Synchrotron x-ray scattering measurements were performed on dilute solutions of the purified hemocyanin subunit (Bsin1) from scorpion (Buthus sindicus) and the N-terminal functional unit (Rta) from a marine snail (Rapana thomasiana). The model-independent approach based on spherical harmonics was applied to calculate the molecular envelopes directly from the scattering profiles. Their molecular shapes in solution could be restored at 2-nm resolution. We show that these units represent stable, globular building blocks of the two hemocyanin families and emphasize their conformational differences on a subunit level. Because no crystallographic or electron microscopy data are available for isolated functional units, this study provides for the first time structural information for isolated, monomeric functional subunits from both hemocyanin families. This has been made possible through the use of low protein concentrations (< or = 1 mg/ml). The observed structural differences may offer advantages in building very different overall molecular architectures of hemocyanin by the two phyla.  相似文献   

7.
Pyruvate dehydrogenase kinase was purified about 2,700-fold to apparent homogeneity from extracts of bovine kidney mitochondria. The kinase consists of two subunits (alpha beta) with molecular weights of 48,000 (alpha) and 45,000 (beta) as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Kinase activity resides in the alpha subunit. The alpha subunit is sensitive to proteolysis by chymotrypsin, whereas the beta subunit is selectively modified by trypsin. These observations, together with the results of peptide mapping, indicate that the two subunits are distinctly different proteins. It is proposed that the beta subunit is a regulatory subunit.  相似文献   

8.
Hemocyanins are large oligomeric respiratory proteins found in many arthropods and molluscs. The hemocyanin of the tarantula Eurypelma californicum is a 24-mer protein complex with molecular mass of 1, 726,459 Da that consists of seven different polypeptides (a-g), each occupying a distinct position within the native molecule. Here we report the complete molecular structure of the E. californicum hemocyanin as deduced from the corresponding cDNAs. This represents the first complex arthropod hemocyanin to be completely sequenced. The different subunits display 52-66% amino acid sequence identity. Within the subunits, the central domain, which bears the active center with the copper-binding sites A and B, displays the highest degree of identity. Using a homology modeling approach, the putative three-dimensional structure of individual subunits was deduced and compared. Phylogenetic analyses suggest that differentiation of the individual subunits occurred 400-550 million years ago. The hemocyanin of the stemline Chelicerata was probably a hexamer built up of six distinct subunit types a, b/c, d, e, f, and g, whereas that of the early Arachnida was originally a 24-mer that emerged after the differentiation of subunits b and c.  相似文献   

9.
Hemocyanins are large copper-containing respiratory proteins found in many arthropod species. Scorpions and orthognath spiders possess a highly conserved 4 x 6-mer hemocyanin that consists of at least seven distinct subunit types (termed a to g). However, many "modern" entelegyne spiders such as Cupiennius salei differ from the standard arachnid scheme and have 2 x 6-mer hemocyanins. Here we report the complete primary structure of the 2 x 6-mer hemocyanin of C. salei as deduced from cDNA sequencing, gel electrophoresis, and matrix-assisted laser desorption spectroscopy. Six distinct subunit types (1 through 6) and three additional allelic sequences were identified. Each 1 x 6-mer half-molecule most likely is composed of subunits 1-6, with subunit 1 linking the two hexamers via a disulfide bridge located in a C-terminal extension. The C. salei hemocyanin subunits all belong to the arachnid g-type, whereas the other six types (a-f) have been lost in evolution. The reconstruction of a complex hemocyanin from a single g-type subunit, which commenced about 190 million years ago and was completed about 90 million years ago, might be explained by physiological and behavioral changes that occurred during the evolution of the entelegyne spiders.  相似文献   

10.
Hemocyanin is the blue respiratory protein of many arthropod species. While its structure, evolution, and physiological function have been studied in detail in Decapoda, there is little information on hemocyanins from other crustacean taxa. Here, we have investigated the hemocyanin of the peacock mantis shrimp Odontodactylus scyllarus, which belongs to the Stomatopoda (Hoplocarida). O. scyllarus hemocyanin forms a dodecamer (2 × 6-mer), which is composed of at least four distinct subunit types. We obtained the full-length cDNA sequences of three hemocyanin subunits, while a fourth cDNA was incomplete at its 5′ end. The complete full-length cDNAs of O. scyllarus hemocyanin translate into polypeptides of 650–662 amino acids, which include signal peptides of 16 or 17 amino acids. The predicted molecular masses of 73.1–75.1 kDa correspond well with the main hemolymph proteins detected by SDS-PAGE and Western blotting using various anti-hemocyanin antibodies. Phylogenetic analyses show that O. scyllarus hemocyanins belong to the β-type of malacostracan hemocyanin subunits, which diverged from the other subunits before the radiation of the malacostracan subclasses around 520 million years ago. Molecular clock analysis revealed an ancient and complex pattern of hemocyanin subunit evolution in Malacostraca and also allowed dating divergence times of malacostracan taxa.  相似文献   

11.
The hemocyanins of the scorpions Leiurus quinquestriatus and Androctonus australis, the tarantula Eurypelma californicum (all 24-mers), and the lycosid spider Cupiennius salei (dodecamer) were dissociated into subunits, the subunits isolated and studied by two-dimensional immunoelectrophoresis for interspecific cross-reactivities. Androctonus hemocyanin yielded a pattern of 8 subunit types in agreement with data from Lamy et al. (1979, Arch. Biochem. Biophys. 193, 140-149). Leiurus hemocyanin is also composed of 8 immunologically distinct subunits which could be assigned to the pattern of Androctonus in a subunit-to-subunit correlation. The subunit designations 1 to 6 of Lamy et al. could be adopted for both scorpion hemocyanins; however, in the present communication, Lamy's subunits 3A/3B are designated as 3'/3", because we could not unequivocally decide if 3' = 3A and 3" = 3B or vice versa. The 7 subunit types a to g of Eurypelma hemocyanin could be correlated with the scorpion hemocyanin subunits as follows: a = 3', b = 5B, c = 3C, d = 5A, e = 6, f = 2, g = 4. Additional cross-reactivities were detected between e/4, and f/5A, respectively. No subunit of Eurypelma hemocyanin is homologous to scorpion 3", which could not be precipitated by anti-Eurypelma antiserum. Antiserum against Cupiennius hemocyanin precipitated subunit f of Eurypelma and subunits 2 and 5A of scorpion hemocyanin. The published models of quaternary structure and a possible subunit phylogeny of arachnidan hemocyanins are discussed in view of the present results.  相似文献   

12.
Two different structural subunits were identified in Rapana thomasiana hemocyanin: RtH1 and RtH2. RtH1-a is the N-terminal functional unit in the subunit RtH1 and its stability toward temperature and chemical denaturation by guanidinium hydrochloride (Gdn.HCl) are studied and compared with the structural subunit RtH1 and the whole Rapana hemocyanin molecule. The conformational changes, induced by the various treatments, were monitored by CD and fluorescence spectroscopy. The critical temperatures (T(c)) for RtH1-a, the structural subunits and the native Hc, determined by fluorescence spectroscopy, coincide closely with the melting temperatures (T(m)), determined by CD spectroscopy. The free energy of stabilization in water, DeltaG(D)(H(2)O), determined from (Gdn. HCl) denaturation studies, is about two times higher for the structural subunit RtH1 and the whole hemocyanin molecule as compared to the functional unit RtH1-a. The oligomerization between the structural subunits or the eight functional units, assembled in subunit RtH1, has a stabilizing effect on the whole molecule as well as the structural subunits.  相似文献   

13.
Hemocyanins are large oligomeric copper-containing proteins that serve for the transport of oxygen in many arthropod species. While studied in detail in the Chelicerata and Crustacea, hemocyanins had long been considered unnecessary in the Myriapoda. Here we report the complete molecular structure of the hemocyanin from the common house centipede Scutigera coleoptrata (Myriapoda: Chilopoda), as deduced from 2D-gel electrophoresis, MALDI-TOF mass spectrometry, protein and cDNA sequencing, and homology modeling. This is the first myriapod hemocyanin to be fully sequenced, and allows the investigation of hemocyanin structure-function relationship and evolution. S. coleoptrata hemocyanin is a 6 x 6-mer composed of four distinct subunit types that occur in an approximate 2 : 2 : 1 : 1 ratio and are 49.5-55.5% identical. The cDNA of a fifth, highly diverged, putative hemocyanin was identified that is not included in the native 6 x 6-mer hemocyanin. Phylogenetic analyses show that myriapod hemocyanins are monophyletic, but at least three distinct subunit types evolved before the separation of the Chilopoda and Diplopoda more than 420 million years ago. In contrast to the situation in the Crustacea and Chelicerata, the substitution rates among the myriapod hemocyanin subunits are highly variable. Phylogenetic analyses do not support a common clade of Myriapoda and Hexapoda, whereas there is evidence in favor of monophyletic Mandibulata.  相似文献   

14.
1. The hemocyanin of the chiton, Stenoplax conspicua, has a molecular weight determined by light-scattering of 4.2 X 10(6) daltons, (dt) and a sedimentation coefficient of 60 S. 2. The fully dissociated subunits in 6.0 and 8.0 M urea, and at pH 8.9-10 in the absence of divalent ions, have molecular weights of 4.15-4.30 x 10(5) and 4.17-4.75 x 10(5) dt, which is close to one-tenth of the molecular weight of the parent hemocyanin assembly. 3. The pH dependence of the molecular weights from pH 4.5 to 11 exhibit bell-shaped transition profiles, best accounted for by a three-species, decamer to dimer to monomer scheme of subunit dissociation, with one acidic and one basic ionizing group per dimer and 5-8 acidic and basic groups per monomer. 4. In the absence of stabilizing divalent ions S. conspicua hemocyanin is relatively unstable. At pH 7.4 in the presence of 0.01 M EDTA, it is predominantly in the dimeric state, characterized by a sedimentation constant of 18 S. It is also more readily dissociated to monomers at high pHs (8-9 and above) than are the C. stelleri and A. granulata hemocyanins. 5. Urea and GdmCl are effective dissociating agents of S. conspicua hemocyanin. The urea dissociation profile obtained at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+, and analyzed by means of the decamer-dimer-monomer scheme of subunit dissociation gave estimates of about 30 amino acid groups (Napp) at the dimer contacts within the hemocyanin decamers and about 120 groups per monomer within each dimer, suggesting hydrophobic stabilization of hemocyanin assembly.  相似文献   

15.
Mammalian farnesyltransferase, which attaches a 15 carbon isoprenoid, farnesyl, to a cysteine in p21ras proteins, contains two subunits, alpha and beta. The beta subunit is known to bind p21ras proteins. We show here that the alpha subunit is shared with another prenyltransferase that attaches 20 carbon geranylgeranyl to Ras-related proteins. Farnesyltransferase and geranylgeranyltransferase have similar molecular weights on gel filtration, but are separated by ion exchange chromatography. Both enzymes are precipitated and immunoblotted by multiple antibodies directed against the alpha subunit of farnesyltransferase. The two transferases have different specificities for the protein acceptor; farnesyltransferase prefers methionine or serine at the COOH-terminus and geranylgeranyltransferase prefers leucine. The current data indicate that both prenyltransferases are heterodimers that share a common alpha subunit with different beta subunits.  相似文献   

16.
1. The hemocyanin from the marine snail, Fasciolaria tulipa has a molecular weight of 8.6 +/- 0.6 x 10(6) determined by light-scattering and a sedimentation constant of (105.9 +/- 1.1)S. 2. The dissociated subunits at pH 11 and in 8.0 M urea (pH 7.4) had molecular weights of 4.4 x 10(5) and 4.7 x 10(5), close to one-twentieth of the parent didecameric assembly. 3. The pH dependence of the molecular weight profile exhibited bell-shaped transitions in both the presence and absence of Ca2+ and Mg2+ ions. In the physiological pH range of about 7.5-8.2 in divalent ion-containing buffers neither the molecular weight behavior nor the sedimentation patterns suggest any significant dissociation. 4. Both the urea and the Hofmeister salt series were found to dissociate the didecameric hemocyanin assembly. The ureas exhibit increasing effectiveness as dissociating agents with the higher alkyl substituted members of the series, suggesting hydrophobic stabilization of the subunit assembly. 5. Denaturation of the hemocyanin subunits by the urea series follows the same trend in effectiveness as the dissociation reaction; the reagent concentrations required to cause unfolding of the globular domains of the hemocyanin chains were, however, much higher than those needed for dissociation.  相似文献   

17.
18.
The high molecular weight hemocyanin found in the hemolymph of the horseshoe crab, Limulus polyphemus, is composed of at least eight different kinds of subunits. Ion exchange chromatography at high pH in the presence of EDTA yields five major zones, hemocyanins I to V, three of which are electrophoretically heterogeneous. The subunits have similar molecular weights, 65,000 to 70,000, and their amino acid compositions are remarkably similar to each other and to other arthropod and molluscan hemocyanins. Digestion of the native subunits of Limulus hemocyanin by formic acid or trypsin shows considerable structural diversity which is supported by cyanogen bromide cleavage patterns and by peptide mapping of the tryptic peptides prepared from denatured hemocyanin subunits. The structural differentiation of the subunits is accompanied by functional differentiation, as shown in previous investigations of their O2 and CO affinities (Sullivan, B., Bonaventura, J., and Bonaventura, C. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 2558-2562; Bonaventura, C., Bonaventura, J., Sullivan, B., and Bourne, S. (1975) Biochemistry 13, 4784-4789). The subunit diversity of Limulus hemocyanin suggests that other electrophoretically heterogeneous hemocyanins may be composed of structurally distinct subunits.  相似文献   

19.
Crystals of Limulus hemocyanin subunits IIIa, IIIb and IV are suitable for X-ray diffraction analysis. The three-dimensional structure of subunit IV is determined by molecular replacement and non-crystallographic symmetry averaging methods. A tentative model of subunit IIIa is obtained from a partial data set. Both structures, similar to subunit II, could provide primary structure segments suitable for oligonucleotide probe synthesis.  相似文献   

20.
A complex between bovine lutropin (LH) and monovalent antibodies (Fab fragments) directed against its alpha subunit, which is common to the glycoprotein hormones, has been purified by gel filtration and chromatography on concanavalin A-Sepharose. The complex is heterogenous with respect to molecular size; 70--80% of the hormone is complexed with either two or three Fab fragments. The LH-Fab alpha complexes retain only about 13% receptor binding activity as compared to LH when measured in a radioligand receptor assay in which the radiolabeled ligand is human choriogonadotropin. (Use of the human hormone as labeled ligand permits direct measurement of competition between receptor and the bovine complex because the alpha portion of the human hormone does not cross react significantly with antibodies directed against bovine alpha subunits.) Complex formation does not lead to dissociation of the lutropin into its subunits, as shown with a homologous LH-beta immunoassay which distinguishes free beta subunit from intact LH. Complexing of LH with Fab-alpha fragments also causes little or no change in the affinity of the hormone's beta subunit for anti-LH-beta antibodies indicating that significant changes in beta subunit conformation did not occur. The data show that at least two well-separated antigenic regions on the alpha subunit are exposed to the surface in the intact hormone. They are also in agreement with the proposal that the loss of binding activity to receptor is due to steric effects rather than to changes in conformation or dissociation, and that there may be sites on the alpha subunit which interact directly with the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号