首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specifically mutated Epstein-Barr virus (EBV) recombinants which truncate latent membrane protein 2A (LMP2A) and LMP2B after 260 of 497 amino acids and after 141 of 378 amino acids, respectively, were constructed. Despite truncation before the last seven transmembrane domains and the carboxy terminus, the mutant recombinants were not altered in initiation of primary B-lymphocyte infection or growth transformation, in expression of nuclear protein 1 or 2 or LMP1, or in induction of lytic EBV replication. Cells transformed by mutant virus recombinants were not different from wild-type virus transformants in initial or long-term outgrowth, sensitivity to limiting cell dilution, serum requirement, or clonogenic growth in soft agar. Together with similar analyses of a mutation stopping translation of the LMP2A amino-terminal cytoplasmic domain, these results indicate that LMP2 is not required for primary B-lymphocyte infection in vitro.  相似文献   

2.
F Wang  A Marchini    E Kieff 《Journal of virology》1991,65(4):1701-1709
The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative cycle gene expression and virus replication can be induced, in contrast to previously reported in vitro infected B-lymphoma cells. These studies demonstrate that dominant selectable markers can be inserted into the EBV genome, are active in the context of the EBV genome, and can be used to recover recombinant EBV in B-lymphoma cells. This system should be particularly useful for recovering EBV genomes with mutations in essential transforming genes.  相似文献   

3.
K M Izumi  K M Kaye    E D Kieff 《Journal of virology》1994,68(7):4369-4376
Previous recombinant Epstein-Barr virus molecular genetic experiments with specifically mutated LMP1 genes indicate that LMP1 is essential for primary B-lymphocyte growth transformation and that the amino-terminal cytoplasmic and first transmembrane domains are together an important mediator of transformation. EBV recombinants with specific deletions in the amino-terminal cytoplasmic domain have now been constructed and tested for the ability to growth transform primary B lymphocytes into lymphoblastoid cell lines. Surprisingly, deletion of DNA encoding EHDLER or GPPLSSS from the full LMP1 amino-terminal cytoplasmic domain (MEHDLERGPPGPRRPPRGPPLSSS) had no discernible effect on primary B-lymphocyte transformation. These two motifs distinguish the LMP1 amino-terminal cytoplasmic domain from other arginine-rich membrane proximal sequences that anchor hydrophobic transmembrane domains. Two deletions which included the ERGPPGPRRPPR motif adversely affected but did not prevent transformation. This arginine- and proline-rich sequence is probably important in anchoring the first transmembrane domain in the plasma membrane, since these mutated LMP1s had altered stability and cell membrane localization. The finding that overlapping deletions of the entire amino-terminal cytoplasmic domain do not ablate transformation is most consistent with a model postulating that the transmembrane and carboxyl-terminal cytoplasmic domains are the likely biochemical effectors of transformation.  相似文献   

4.
5.
Functional domains of Epstein-Barr virus nuclear antigen EBNA-1.   总被引:25,自引:18,他引:7  
  相似文献   

6.
7.
Glycoprotein D (gD) is a viron envelope component of herpes simplex virus types 1 and 2. We have previously defined seven monoclonal antibody (MAb) groups which recognize distinct epitopes on the mature gD-1 protein of 369 amino acids. MAb groups VII, II, and V recognize continuous epitopes at residues 11-19, 272-279, and 340-356, respectively. MAb groups I, III, IV, and VI recognize discontinuous epitopes. Recent studies have focused on epitopes I, III, and VI. Using truncated forms of gD generated by recombinant DNA methods and proteolysis, epitopes III, IV, and VI were located within amino acids 1-233. A portion of discontinuous epitope I was located in a region within residues 233-275. For this study, we used recombinant DNA methods to create mutations in the gD-1 gene and studied the effects of those mutations on gD as expressed in mammalian cells. Plasmid pRE4, containing the coding sequence of gD-1 and the Rous sarcoma virus long terminal repeat promoter, was transfected into mammalian cells. The expressed protein, gD-1-(pRE4), was identical in size and antigenic properties to gD-1 from infected cells. Six in-frame deletion mutations were subsequently constructed by using restriction enzymes to excise portions of the gD-1 gene. Plasmids carrying these mutated forms were transfected into cells, and the corresponding proteins were examined at 48 h posttransfection for antigenicity and glycosylation patterns. Three deletions of varying size were located downstream of residue 233. Analysis of these mutants showed that amino acids within the region 234-244 were critical for binding of DL11 (group I), but not for other MAb groups. Three other deletion mutants lost all ability to bind MAbs which recognize discontinuous epitopes. In addition, much of the gD expressed by these mutants was observed to migrate as high-molecular-weight aggregated forms in nondenaturing gels. Each of these mutations involved the loss of a cysteine residue, suggesting that disulfide linkages play an essential role in the formation of discontinuous epitopes. The extent of glycosylation of the mutant gD molecules accumulated at 48 h posttransfection suggested altered carbohydrate processing. In one case, there was evidence for increased O-linked glycosylation. Those proteins which had lost a cysteine residue as part of the deletion did not accumulate molecules processed beyond the high-mannose stage. The results suggest that carbohydrate processing during synthesis of gD is very sensitive to alterations in structure, particularly changes involving cysteine residues.  相似文献   

8.
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms the outer protein shell directly underneath the lipid envelope of the virion. The MA protein has a key role in different aspects of virus assembly, including the incorporation of the HIV-1 Env protein complex, which contains a transmembrane glycoprotein with an unusually long cytoplasmic tail. In this study, we compared the abilities of HIV-1 MA mutants to incorporate Env protein complexes with long and short cytoplasmic tails. While the mutant particles failed to incorporate the authentic HIV-1 Env protein complex, they retained the ability to efficiently and functionally incorporate the amphotropic murine leukemia virus Env protein complex, which has a short cytoplasmic tail. Moreover, incorporation of the autologous Env protein complex could be restored by a second-site mutation that resulted in the truncation of the cytoplasmic tail of the HIV-1 transmembrane glycoprotein. Remarkably, the second-site mutation also restored the ability of MA mutants to replicate in MT-4 cells. These results imply that the long cytoplasmic tail of the transmembrane glycoprotein is responsible for the exclusion of the HIV-1 Env protein complex from MA mutant particles.  相似文献   

9.
10.
Recent cDNA cloning and sequencing of two Epstein-Barr virus (EBV)-specific mRNAs from latently infected cultures revealed that these RNAs are encoded across the fused terminal repeats of the viral genome and that they are likely to encode two nearly identical proteins with the same transmembrane domains. The smaller predicted protein (LMP2B) lacks 119 amino-terminal amino acids found in the larger one (LMP2A). To test whether these proteins are expressed in latently infected lymphocytes, antibodies to the LMP2 proteins were derived by immunizing rabbits with TrpE-LMP2A fusion proteins. Affinity-purified LMP2-specific antibodies recognized 54- and 40-kilodalton proteins, corresponding to LMP2A and LMP2B, in immunoblots of rodent fibroblasts stably transfected with eucaryotic expression plasmids containing either the LMP2A or LMP2B cDNA. Similar-size proteins were also identified in immunoblots of latently infected lymphocytes. LMP2A localized to membranes in cellular fractionation studies. In immunofluorescent studies, LMP2 localized in the plasma membrane of EBV-infected lymphocytes, with the majority of reactivity confined to the region of the LMP1 patch. This reactivity was detected in almost all lymphoblastoid cells latently infected with EBV.  相似文献   

11.
Hau PM  Tsang CM  Yip YL  Huen MS  Tsao SW 《PloS one》2011,6(6):e21176
The EBV-encoded latent membrane protein 1 (LMP1) functions as a constitutive active form of tumor necrosis factor receptor (TNFR) and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC) cell line (C666-1) and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells.  相似文献   

12.
STAT3 and STAT5 are constitutively activated and nuclear in nasopharyngeal carcinoma (NPC) cells. In normal signaling, STATs are only transiently activated. To investigate whether Epstein-Barr virus (EBV), and in particular the protein LMP1, contributes to sustained STAT phosphorylation and activation in epithelial cells, we examined STAT activity in two sets of paired cell lines, HeLa, an EBV-converted HeLa cell line, HeLa-Bx1, the NPC-derived cell line CNE2-LNSX, and an LMP1-expressing derivative, CNE2-LMP1. EBV infection was associated with a significant increase in the tyrosine-phosphorylated forms of STAT3 and STAT5 in HeLa-Bx1 cells. This effect correlated with LMP1 expression, since phosphorylated STAT3 and STAT5 levels were also increased in CNE2-LMP1 cells relative to the control CNE2-LNSX cells. No change was observed in STAT1 or STAT6 phosphorylation in these cell lines, nor was there a significant change in the levels of total STAT3, STAT5, STAT1, or STAT6 protein. Tyrosine phosphorylation allows the normally cytoplasmic STAT proteins to enter the nucleus and bind to their recognition sequences in responsive promoters. The ability of LMP1 to activate STAT3 was further established by immunofluorescence assays in which coexpression of LMP1 in transfected cells was sufficient to mediate nuclear relocalization of Flag-STAT3 and by an electrophoretic mobility shift assay which showed that LMP1 expression in CNE2-LNSX cells was associated with increased endogenous STAT3 DNA binding activity. In addition, the activity of a downstream target of STAT3, c-Myc, was upregulated in HeLa-Bx1 and CNE2-LMP1 cells. A linkage was established between interleukin-6 (IL-6)- and LMP1-mediated STAT3 activation. Treatment with IL-6 increased phosphorylated STAT3 levels in CNE2-LNSX cells, and conversely, treatment of CNE2-LMP1 cells with IL-6 neutralizing antibody ablated STAT3 activation and c-Myc upregulation. The previous observation that STAT3 activated the LMP1 terminal repeat promoter in reporter assays was extended to show upregulated expression of endogenous LMP1 mRNA and protein in HeLa-Bx1 cells transfected with a constitutively activated STAT3. A model is proposed in which EBV infection of an epithelial cell containing activated STATs would permit LMP1 expression. This in turn would establish a positive feedback loop of IL-6-induced STAT activation, LMP1 and Qp-EBNA1 expression, and viral genome persistence.  相似文献   

13.
14.
Recombinant Epstein-Barr viruses (EBVs) were made with mutated latent membrane protein 1 (LMP1) genes that express only the LMP1 amino-terminal cytoplasmic and six transmembrane domains (MS187) or these domains and the first 44 amino acids of the 200-residue LMP1 carboxy-terminal domain (MS231). After infection of primary B lymphocytes with virus stocks having small numbers of recombinant virus and large numbers of P3HR-1 EBV which is transformation defective but wild type (WT) for LMP1, all lymphoblastoid cell lines (LCLs) that had MS187 or MS231 LMP1 also had WT LMP1 provided by the coinfecting P3HR-1 EBV. Lytic virus infection was induced in these coinfected LCLs, and primary B lymphocytes were infected. In over 200 second-generation LCLs, MS187 LMP1 was never present without WT LMP1. Screening of over 600 LCLs infected with virus from MS231 recombinant virus-infected LCLs identified two LCLs which were infected with an MS231 recombinant without WT LMP1. The MS231 recombinant virus could growth transform primary B lymphocytes when cells were grown on fibroblast feeders. Even after 6 months on fibroblast feeder layers, cells transformed by the MS231 recombinant virus died when transferred to medium without fibroblast feeder cells. These data indicate that the LMP1 carboxy terminus is essential for WT growth-transforming activity. The first 44 amino acids of the carboxy-terminal cytoplasmic domain probably include an essential effector of cell growth transformation, while a deletion of the rest of LMP1 can be complemented by growth on fibroblast feeder layers. LMP1 residues 232 to 386 therefore provide a growth factor-like effect for the transformation of B lymphocytes. This effect may be indicative of the broader role of LMP1 in cell growth transformation.  相似文献   

15.
16.
The membrane-bound form of immunoglobulin serves as an antigen-specific receptor for B cells mediating signal transduction and antigen presentation. We have developed an assay that reconstitutes both these physiologic responses with respect to the antigen phosphorylcholine. By introducing specific mutations in the human Ig mu chain gene, we have shown that certain transmembrane residues and the short cytoplasmic domain are crucial for these two activities. Moreover, elimination of a single transmembrane hydroxyl group severely inhibits antigen presentation without affecting signal transduction, suggesting that these two functions are mediated by different protein interactions.  相似文献   

17.
The P3HR-1 subclone of Jijoye differs from Jijoye and from other Epstein-Barr virus (EBV)-infected cell lines in that the virus produced by P3HR-1 cultures lacks the ability to growth-transform normal B lymphocytes (Heston et al., Nature (London) 295:160-163, 1982; Miller et al., J. Virol. 18:1071-1080, 1976; Miller et al., Proc. Natl. Acad. Sci. U.S.A. 71:4006-4010, 1974; Ragona et al., Virology 101:553-557, 1980). The P3HR-1 virus was known to be deleted for a region which encodes RNA in latently infected, growth-transformed cells (Bornkamm et al., J. Virol. 35:603-618, 1980; Heller et al., J. Virol. 38:632-648, 1981; King et al., J. Virol. 36:506-518, 1980; Raab-Traub et al., J. Virol. 27:388-398, 1978; van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934, 1980). This deletion is now more precisely defined. The P3HR-1 genome contains less than 170 base pairs (and possibly none) of the 3,300-base pair U2 region of EBV DNA and is also lacking IR2 (a 123-base pair repeat which is the right boundary of U2). A surprising finding is that EBV isolates vary in part of the U2 region. Two transforming EB viruses, AG876 and Jijoye, are deleted for part of the U2 region including most or all of a fragment, HinfI-c, which encodes part of one of the three more abundant cytoplasmic polyadenylated RNAs of growth-transformed cells (King et al., J. Virol. 36:506-518, 1980; King et al., J. Virol. 38:649-660, 1981; van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934).  相似文献   

18.
The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) regulates its own expression and the expression of human genes via its two functional moieties; the transmembrane domains of LMP1 are required to regulate its expression via the unfolded protein response (UPR) and autophagy in B cells, and the carboxy-terminal domain of LMP1 activates cellular signaling pathways that affect cellular proliferation and survival. An apparent anomaly in the complex regulation of the UPR and autophagy by LMP1 is that the induction of either pathway can lead to cellular death, yet neither EBV-infected B cells nor B cells expressing only LMP1 die. Thus, we sought to understand how B cells that express LMP1 survive. The transmembrane domains of LMP1 activated apoptosis in B cells, the apoptosis required the UPR, and the carboxy-terminal domain of LMP1 blocked this apoptosis. The expression of the mRNA of Bcl2a1, encoding an antiapoptotic homolog of BCL2, correlated directly with the expression of LMP1 in EBV-positive B-cell strains, and its expression inhibited the apoptosis induced by the transmembrane domains of LMP1. These findings illustrate how the carboxy-terminal domain of LMP1 supports survival of B cells in the presence of the deleterious effects of the complex regulation of this viral oncogene.  相似文献   

19.
Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号