首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intermediate in the reaction catalysed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 was identified as 4-chlorobenzoyl-CoA. One component of 4-chlorobenzoate debalogenase worked as a a 4-chlorobenzoyl-CoA ligase catalysing the formation of 4-chlorobenzoyl-CoA from 4-chlorobenzoate, coenzyme A and ATP. This intermediate was detected spectrophotometrically and by HPLC. 4-chlorobenzoyl-CoA was the substrate for the dehalogenase component, which catalysed the conversion to 4-hydroxybenzoate with concomitant release or coenzyme A.  相似文献   

2.
Summary 4-Chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 showed dehalogenating activity in various organic solvents. In alcohols like methanol (150%) or ethanol (120%) higher activities than in water (100%) were obtained. In apolar solvents like petroleum ether (5%) and nhexane (5%) only trace activities were observed. The solvents did not increase the stability of the enzyme. 4-Chlorobenzoic acid methylester, a substance not soluble in water, was not dehalogenated in organic solvents.  相似文献   

3.
Extracts of Pseudomonas sp. CBS3 converted 4-chlorobenzoate into 4-hydroxybenzoate. The enzyme responsible for this conversion was enriched by ammonium sulphate fractionation (30–60% saturation, 1.3-fold). The optimum conditions for the reaction were 30–35°C and pH 7–7.5. The enzyme was activated by Mn2+ (1 mM final concentration) up to 120-fold, and by Co2+ (1 mM final concentration) up to 60-fold. Other divalent ions had no effect. EDTA inhibited the enzyme. 4-Bromobenzoate and 4-iodobenzoate were substrates for the enzyme, but 4-fluorobenzoate was not converted.  相似文献   

4.
Extracts of Pseudomonas sp. strain CBS3 grown with 4-chlorobenzoate as sole carbon source contained an enzyme that converted 4-chlorobenzoate to 4-hydroxybenzoate. This enzyme was shown to consist of three components, all necessary for the reaction. Component I, which had a molecular weight of about 3,000, was highly unstable. Components II and III were stable proteins with molecular weights of about 86,000 and 92,000.  相似文献   

5.
Extracts of Pseudomonas sp. strain CBS3 grown with 4-chlorobenzoate as sole carbon source contained an enzyme that converted 4-chlorobenzoate to 4-hydroxybenzoate. This enzyme was shown to consist of three components, all necessary for the reaction. Component I, which had a molecular weight of about 3,000, was highly unstable. Components II and III were stable proteins with molecular weights of about 86,000 and 92,000.  相似文献   

6.
The degradation of 4-chlorobenzoate (4-CBA) by Pseudomonas sp. strain CBS3 is thought to proceed first by the dehalogenation of 4-CBA to 4-hydroxybenzoate (4-HBA), which is then metabolized following the protocatechuate branch of the beta-ketoadipate pathway. The cloning of the 4-CBA dehalogenation system was carried out by constructing a gene bank of Pseudomonas sp. strain CBS3 in Pseudomonas putida. Hybrid plasmid pPSA843 contains a 9.5-kilobase-pair fragment derived from the chromosome of Pseudomonas sp. strain CBS3. This plasmid confers on P. putida the ability to dehalogenate 4-CBA and grow on 4-CBA as the only source of carbon. However, pPSA843 did not complement mutants of P. putida unable to grow on 4-HBA (POB-), showing that the genes involved in the metabolism of 4-HBA were not cloned. Subcloning of Pseudomonas sp. strain CBS3 genes revealed that most of the insert is required for the dehalogenation of 4-CBA, suggesting that more than one gene product is involved in this dehalogenation.  相似文献   

7.
Pseudomonas sp. CBS3 was grown with 4-chlorobenzoate as sole source of carbon and energy. Freshly prepared cell-free extracts converted 4-chlorobenzoate to 4-hydroxybenzoate. After storage for 16 hours at 25 degrees C only about 50% of the initial activity was left. Treatment at 55 degrees C for 10 minutes, dialysis or desalting of the extracts by gel filtration caused a total loss of the activity of the 4-chlorobenzoate dehalogenase. The activity could be restored by the addition of ATP, coenzyme A and Mg2+. If one of these cofactors was missing, no dehalogenating activity was detectable. The amount of 4-hydroxybenzoate formed was proportional to the amount of ATP available in the test system whereas CoA served as a real coenzyme. A novel ATP/coenzyme A dependent reaction mechanism for the dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 is proposed.  相似文献   

8.
9.
In cell-free extracts from Pseudomonas sp. strain CBS3 the conversion of 4-chlorophenylacetate to 3,4-dihydroxyphenylacetate was demonstrated. By Sephacryl S-200 chromatography two protein fractions, A and B, were obtained which both were essential for enzyme activity. Fe2+ and NADH were cofactors of the reaction. NADPH also activated the enzyme, but less effectively than NADH. FAD had no influence on enzyme activity. 4-Hydroxyphenylacetate, 4-chloro-3-hydroxyphenylacetate, and 3-chloro-4-hydroxyphenylacetate were poor substrates for the enzyme, suggesting that these substances are not intermediates of the reaction. We therefore suggest that the reaction proceeds via a dioxygenated intermediate.  相似文献   

10.
The three genes encoding the 4-chlorobenzene dehalogenase polypeptides were excised from a Pseudomonas sp. CBS-3 DNA fragment and separately cloned and expressed in Escherichia coli. The three enzymes were purified from the respective subclones by using an ammonium sulfate precipitation step followed by one or two column chromatographic steps. The 4-chlorobenzoate:coenzyme A ligase was found to be a homodimer (57-kDa subunit size), to require Mg2+ (Co2+ and Mn2+ are also activators) for activity, and to turn over MgATP (Km = 100 microM), coenzyme A (Km = 80 microM), and 4-chlorobenzoate (Km = 9 microM) at a rate of 30 s-1 at pH 7.5 and 25 degrees C. Benzoate, 4-bromobenzoate, 4-iodobenzoate, and 4-methylbenzoate were shown to be alternate substrates while 4-hydroxybenzoate, 4-aminobenzoate, 2-aminobenzoate, 2,3-dihydroxybenzoate, 4-coumarate, palmate, laurate, caproate, butyrate, and phenylacetate were not substrate active. The 4-chlorobenzoate-coenzyme A dehalogenase was found to be a homotetramer (30 kDa subunit size) to have a Km = 15 microM and kcat = 0.3 s-1 at pH 7.5 and 25 degrees C and to be catalytically inactive toward hydration of crotonyl-CoA, alpha-methylcrotonyl-CoA, and beta-methylcrotonyl-CoA. The 4-hydroxybenzoate-coenzyme A thioesterase was shown to be a homotetramer (16 kDa subunit size), to have a Km = 5 microM and kcat = 7 s-1 at pH 7.5 and 25 degrees C, and to also catalyze the hydrolyses of benzoyl-coenzyme A and 4-chlorobenzoate-coenzyme A. Acetyl-coenzyme A, hexanoyl-coenzyme A, and palmitoyl-coenzyme A were not hydrolyzed by the thioesterase.  相似文献   

11.
In extracts from Arthrobacter sp. SU DSM 20407 an enzyme was detectable, that converted 4-chlorobenzoate into 4-hydroxybenzoate. This conversion was also observed when no oxygen was present in the reaction mixture. Boiling for 5 min destroyed the enzyme activity. 4-Bromo- and 4-iodobenzoate were substrates for the enzyme too, but not 4-fluorobenzoate, 4-chlorophenylacetate and 4-chlorocinnamic acid. The enzyme showed optimum activity at 16 degrees C and at pH 7-7.5. The specific activity in the extracts varied between 0.5 and 5 mU/mg of protein. Zn2+ and Cu2+ inhibited the enzyme, while H2O2 slightly activated. In contrast to all other 4-chlorobenzoate dehalogenases described before the enzyme was not inhibited by EDTA, nor was it activated by Mn2+. Other divalent ions also had no effect. The molecular mass of the enzyme was 45,000 +/- 5,000 Da as judged by gel-filtration.  相似文献   

12.
DL-2-Haloacid dehalogenase from Pseudomonas sp. 113 (DL-DEX 113) catalyzes the hydrolytic dehalogenation of D- and L-2-haloalkanoic acids, producing the corresponding L- and D-2-hydroxyalkanoic acids, respectively. Every halidohydrolase studied so far (L-2-haloacid dehalogenase, haloalkane dehalogenase, and 4-chlorobenzoyl-CoA dehalogenase) has an active site carboxylate group that attacks the substrate carbon atom bound to the halogen atom, leading to the formation of an ester intermediate. This is subsequently hydrolyzed, resulting in the incorporation of an oxygen atom of the solvent water molecule into the carboxylate group of the enzyme. In the present study, we analyzed the reaction mechanism of DL-DEX 113. When a single turnover reaction of DL-DEX 113 was carried out with a large excess of the enzyme in H(2)(18)O with a 10 times smaller amount of the substrate, either D- or L-2-chloropropionate, the major product was found to be (18)O-labeled lactate by ionspray mass spectrometry. After a multiple turnover reaction in H(2)(18)O, the enzyme was digested with trypsin or lysyl endopeptidase, and the molecular masses of the peptide fragments were measured with an ionspray mass spectrometer. No peptide fragments contained (18)O. These results indicate that the H(2)(18)O of the solvent directly attacks the alpha-carbon of 2-haloalkanoic acid to displace the halogen atom. This is the first example of an enzymatic hydrolytic dehalogenation that proceeds without producing an ester intermediate.  相似文献   

13.
The genes encoding the 4-chlorobenzoate dehalogenase of Pseudomonas sp. strain CBS3 were, in an earlier study, cloned in Escherichia coli DH1 with the cosmid vector pPSA843 and then mobilized to the 4-chlorobenzoate dehalogenase minus strain Pseudomonas putida KT2440. In this paper we report on the expression of 4-chlorobenzoate dehalogenase in these clones and on the polypeptide composition of the active enzyme. The dehalogenase activity in whole cells suspended in 3.2 mM 4-chlorobenzoate (30 degrees C) was determined to be approximately 27 units (micromoles 4-hydroxybenzoate produced per minute) per 100 g of E. coli-pPSA843 cells and approximately 28 units per 100 g of P. putida-pPSA843 cells. Dehalogenase activity in fresh cellular extracts (pH 7.4, 30 degrees C) prepared from the E. coli and P. putida clones was unstable and at least 20-fold lower than that observed with the whole cells. The polypeptide components of the dehalogenase were identified by selective expression of the cloned dehalogenase genes and analysis of the gene translation products. Analysis of dehalogenase activity in omega insertion mutants and deletion mutants circumscribed the dehalogenase genes to a 4.8-kilobase (4.8 kb) stretch of the 9.5-kb DNA fragment. Selective expression of the dehalogenase genes from a cloned 4.8-kb DNA fragment in a maxicell system revealed a 30-kDa polypeptide as one of the components of the dehalogenase system. Selective expression of the dehalogenase genes using the T7 polymerase promoter system revealed the 30-kDa polypeptide and 57- and 16-kDa polypeptide products. Determination of which of the three polypeptides were translated in deletion mutants provided the relative positions of the encoding genes on a single DNA strand and the direction in which they are transcribed.  相似文献   

14.
The two protein components, II and III, of the 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 were cloned separately into Escherichia coli. Component II was obtained on plasmid pCBSII, containing a 3.0 kbp HindIII fragment, and component III on plasmid pCBSIIIb, containing a 1.3 kbp SalI/PstI fragment. The identities of the two components were confirmed by comparison with the authentic components from Pseudomonas sp. CBS3. Both components were expressed constitutively in E. coli. Neither component alone showed dehalogenating activity. Only in the mixture of crude extracts from both clones was 4-chlorobenzoate dehalogenase detectable. The specific activities in E. coli crude extracts were 2.9 mU (mg protein)-1 for component II and 3.5 mU (mg protein)-1 for component III. Expression analysis by minicell experiments revealed a single polypeptide chain of 29 kDa for component III and of 31 kDa for component III.  相似文献   

15.
Dong J  Carey PR  Wei Y  Luo L  Lu X  Liu RQ  Dunaway-Mariano D 《Biochemistry》2002,41(23):7453-7463
4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA to 4-hydroxybenzoyl-CoA by using an active site Asp145 carboxylate as the nucleophile. Formation of the corresponding Meisenheimer complex (EMc) is followed by chloride ion expulsion to form arylated enzyme (EAr). The EAr is then hydrolyzed to product. In this paper, we report the kinetics for dehalogenase-catalyzed 4-fluorobenzoyl-CoA (4-FBA-CoA) and 4-nitrobenzoyl-CoA (4-NBA-CoA) hydrolysis and provide Raman spectral evidence for the accumulation of EMc in these reactions. The 4-FBA-CoA and 4-NBA-CoA substrate analogues were selected for the poor leaving group ability of their C(4) substituents. Thus, the formation of the EAr from EMc should be hindered, giving rise to a quasi-steady-state equilibrium between EMc and the Michaelis complex. Detailed kinetic studies were carried out to quantitate the composition of the reaction mixtures. Quench experiments demonstrated that significant populations of EAr do not exist in reaction mixtures involving the 4-F- or 4-N-substrates. A kinetic model enabled us to estimate that approximately 10-20% of the enzyme-substrate complexes in the reaction mixtures are present as EMc. Raman difference spectra of 4-NBA-CoA and 4-FBA-CoA bound to WT and H90Q mutant dehalogenase have broad features near 1500 and 1220 cm(-1) that are absent in the free ligand. Crucially, these features are also absent in the Raman spectra of the complexes involving the D145A dehalogenase mutant that are unable to form an EMc. Quantum mechanical calculations, at the DFT level, provide strong support for assigning the novel 1500 and 1220 cm(-1) features to an EMc.  相似文献   

16.
L Luo  K L Taylor  H Xiang  Y Wei  W Zhang  D Dunaway-Mariano 《Biochemistry》2001,40(51):15684-15692
4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA to 4-hydroxybenzoyl-CoA (4-HBA-CoA) via a multistep mechanism involving initial attack of Asp145 on C(4) of the substrate benzoyl ring to form a Meisenheimer intermediate (EMc), followed by expulsion of the chloride ion to form an arylated enzyme intermediate (EAr) and then ester hydrolysis in the EAr to form product. This study examines the role of binding interactions in dehalogenase catalysis. The enzyme and substrate groups positioned for favorable binding interaction were identified from the X-ray crystal structure of the enzyme-4-HBA-3'-dephospho-CoA complex. These groups were individually modified (via site-directed mutagenesis or chemical synthesis) for the purpose of disrupting the binding interaction. The changes in the Gibbs free energy of the enzyme-substrate complex (DeltaDeltaG(ES)) and enzyme-transition state complex (DeltaDeltaG) brought about by the modification were measured. Cases where DeltaDeltaG exceeds DeltaDeltaG(ES) are indicative of binding interactions used for catalysis. On the basis of this analysis, we show that the H-bond interactions between the Gly114 and Phe64 backbone amide NHs and the substrate benzoyl C=O group contribute an additional 3.1 kcal/mol of stabilization at the rate-limiting transition state. The binding interactions between the enzyme and the substrate CoA nucleotide moiety also intensify in the rate-limiting transition state, reducing the energy barrier to catalysis by an additional 3.3 kcal/mol. Together, these binding interactions contribute approximately 10(6) to the k(cat)/K(m).  相似文献   

17.
Warner JR  Copley SD 《Biochemistry》2007,46(45):13211-13222
Tetrachlorohydroquinone dehalogenase catalyzes two successive reductive dehalogenation reactions in the pathway for degradation of pentachlorophenol in the soil bacterium Sphingobium chlorophenolicum. We have used pre-steady-state kinetic methods to probe both the mechanism and the rates of elementary steps in the initial stages of the reductive dehalogenation reaction. Binding of trichlorohydroquinone (TriCHQ) to the active site is followed by rapid deprotonation to form TriCHQ-2 and subsequent formation of 3,5,6-trichloro-4-hydroxycyclohexa-2,4-dienone (TriCHQ*). Further conversion of TriCHQ* to 2,6-dichlorohydroquinone (DCHQ) proceeds only in the presence of glutathione. Conversion of TriCHQ to DCHQ during the first turnover is quite rapid, occurring at about 25 s-1 when the enzyme is saturated with TriCHQ and glutathione. The rate of subsequent turnovers is limited by the rate of the thiol-disulfide exchange reaction required to regenerate the free enzyme after turnover, a reaction that is intrinsically less difficult, but is hampered by premature binding of the aromatic substrate to the active site before the catalytic cycle is completed.  相似文献   

18.
2-Halocarboxylic acid dehalogenase II from Pseudomonas spec. CBS 3 (EC 3.8.1.2), which had been cloned in E. coli Hb 101 was purified to electrophoretic homogeneity from crude extracts of E. coli Hb 101 clone 1164. Ammonium sulfate fractionation and three subsequent chromatographic purification steps yielded a pure enzyme in a 230-fold enrichment. The relative molecular masses as determined by gelfiltration on Superose 12 and SDS-polyacrylamide gel electrophoresis were 64,000 Da for the holoenzyme and 29,000 Da for the subunit. The isoelectric point, determined by isoelectric focusing, was at pH 6.2. Substrate specificity towards chlorinated and brominated substrates was limited to short chain monosubstituted 2-halocarboxylic acids. Fluorocompounds were not converted. The reaction proceeded best at a pH above 9.5 and at a reaction temperature of 40-45 degrees C.  相似文献   

19.
20.
Strains of Arthrobacter catalyze a hydrolytic dehalogenation of 4-chlorobenzoate (4-CBA) to p-hydroxybenzoate. The reaction requires ATP and coenzyme A (CoA), indicating activation of the substrate via a thioester, like that reported for Pseudomonas sp. strain CBS3 (J. D. Scholten, K.-H. Chang, P. C. Babbit, H. Charest, M. Sylvestre, and D. Dunaway-Mariano, Science 253:182-185, 1991). The dehalogenase genes of Arthrobacter sp. strain SU were cloned and expressed in Escherichia coli. Analyses of deletions indicate that dehalogenation depends on three open reading frames (ORFs) which are organized in an operon. There is extensive sequence homology to corresponding gene products in Pseudomonas sp. strain CBS3, suggesting that ORF1 and ORF2 encode a 4-CBA-CoA-ligase and a 4-CBA-CoA dehalogenase, respectively. ORF3 possibly represents a thioesterase, although no homology to the enzyme from Pseudomonas sp. strain CBS3 exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号