首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
For the rapid identification of functional activity of unknown genes from a sequence database, a new method based on in vitro protein synthesis combined with mass spectrometry was developed. To discriminate their subtle enzymatic activity, in vitro synthesized and one-step purified lipolytic enzymes, such as lip A and lip B from Bacillus subtilis and an unknown protein ybfF from Escherichia coli, were reacted with a mixture of triglycerides with different carbon chain lengths. Using direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of reaction product, all three enzymes were revealed to have strong esterase activity rather than true lipase activity, which has no reactivity on long-chain fatty acids such as triolein. These results were also confirmed by classical color assay using p-nitrophenyl butyrate (pNPB) and p-nitrophenyl palmitate (pNPP) as representative lipolytic substrates.  相似文献   

2.
A novel extra-cellular lipase from Bacillus coagulans MTCC-6375 was purified 76.4-fold by DEAE anion exchange and Octyl Sepharose chromatography. The purified enzyme was found to be electrophoretically pure by denaturing gel electrophoresis and possessed a molecular mass of approximately 103 kDa. The lipase was optimally active at 45 degrees C and retained approximately 50% of its original activity after 20 min of incubation at 55 degrees C. The enzyme was optimally active at pH 8.5. Mg2+, Cu2+, Ca2+, Hg2+, Al3+, and Fe3+ at 1mM enhanced hydrolytic activity of the lipase. Interestingly, Hg2+ ions resulted in a maximal increase in lipase activity but Zn2+ and Co2+ ions showed an antagonistic effect on this enzyme. EDTA at 150 mM concentration inhibited the activity of lipase but Hg2+ or Al3+ (10mM) restored most of the activity of EDTA-quenched lipase. Phenyl methyl sulfonyl fluoride (PMSF, 15 mM) decreased 98% of original activity of lipase. The lipase was more specific to p-nitrophenyl esters of 8 (pNPC) and 16 (pNPP) carbon chain length esters. The lipase had a Vmax and Km of 0.44 mmol mg(-1)min(-1) and 28 mM for hydrolysis of pNPP, and 0.7 mmol mg(-1)min(-1) and 32 mM for hydrolysis of pNPC, respectively.  相似文献   

3.
We have studied the kinetics of hydrolysis of triacylglycerols, vinyl esters and p-nitrophenyl butyrate by four carboxylesterases of the HSL family, namely recombinant human hormone-sensitive lipase (HSL), EST2 from Alicyclobacillus acidocaldarius, AFEST from Archeoglobus fulgidus, and protein RV1399C from Mycobacterium tuberculosis. The kinetic properties of enzymes of the HSL family have been compared to those of a series of lipolytic and non-lipolytic carboxylesterases including human pancreatic lipase, guinea pig pancreatic lipase related protein 2, lipases from Mucor miehei and Thermomyces lanuginosus, cutinase from Fusarium solani, LipA from Bacillus subtilis, porcine liver esterase and Esterase A from Aspergilus niger. Results indicate that human HSL, together with other lipolytic carboxylesterases, are active on short chain esters and hydrolyze water insoluble trioctanoin, vinyl laurate and olive oil, whereas the action of EST2, AFEST, protein RV1399C and non-lipolytic carboxylesterases is restricted to solutions of short chain substrates. Lipolytic and non-lipolytic carboxylesterases can be differentiated by their respective value of K(0.5) (apparent K(m)) for the hydrolysis of short chain esters. Among lipolytic enzymes, those possessing a lid domain display higher activity on tributyrin, trioctanoin and olive oil suggesting, then, that the lid structure contributes to enzyme binding to triacylglycerols. Progress reaction curves of the hydrolysis of p-nitrophenyl butyrate by lipolytic carboxylesterases with lid domain show a latency phase which is not observed with human HSL, non-lipolytic carboxylesterases, and lipolytic enzymes devoid of a lid structure as cutinase.  相似文献   

4.
The fatty acyl (lipid) p-nitrophenyl esters p-nitrophenyl caprylate, p-nitrophenyl laurate and p-nitrophenyl palmitate that are incorporated at a few mol % into mixed micelles with Triton X-100 are substrates for bovine milk lipoprotein lipase. When the concentration of components of the mixed micelles is approximately equal to or greater than the critical micelle concentration, time courses for lipoprotein lipase-catalyzed hydrolysis of the esters are described by the integrated form of the Michaelis-Menten equation. Least square fitting to the integrated equation therefore allows calculation of the interfacial kinetic parameters Km and Vmax from single runs. The computational methodology used to determine the interfacial kinetic parameters is described in this paper and is used to determine the intrinsic substrate fatty acyl specificity of lipoprotein lipase catalysis, which is reflected in the magnitude of kcat/Km and kcat. The results for interfacial lipoprotein lipase catalysis, along with previously determined kinetic parameters for the water-soluble esters p-nitrophenyl acetate and p-nitrophenyl butyrate, indicate that lipoprotein lipase has highest specificity for the substrates that have fatty acyl chains of intermediate length (i.e. p-nitrophenyl butyrate and p-nitrophenyl caprylate). The fatty acid products do not cause product inhibition during lipoprotein lipase-catalyzed hydrolysis of lipid p-nitrophenyl esters that are contained in Triton X-100 micelles. The effects of the nucleophiles hydroxylamine, hydrazine, and ethylenediamine on Km and Vmax for lipoprotein lipase catalyzed hydrolysis of p-nitrophenyl laurate are consistent with trapping of a lauryl-lipoprotein lipase intermediate. This mechanism is confirmed by analysis of the product lauryl hydroxamate when hydroxylamine is the nucleophile. Hence, lipoprotein lipase-catalyzed hydrolysis of lipid p-nitrophenyl esters that are contained in Triton X-100 micelles occurs via an interfacial acyl-lipoprotein lipase mechanism that is rate-limited by hydrolysis of the acyl-enzyme intermediate.  相似文献   

5.
An esterase gene from the moderate thermophilic strain Bacillus licheniformis LCB40 was cloned and expressed in Escherichia coli. Comparison of the amino acid sequence of the esterase with those of known lipases and esterases showed the presence of the well-conserved Gly-X-Ser-X-Gly pentapeptide, with an alanine replacing the first glycine. This substitution has never been reported for an esterase but it is present in the lipases from Bacillus subtilis, Bacillus pumilus and Galactomyces candidum. The amino acid sequence showed similarities with lipases and with mammalian lecithin-cholesterol acyltranferases and no similarities with esterases. The enzyme activity of a crude extract from a recombinant Escherichia coli strain showed hydrolysis of p-nitrophenyl caprylate (pNPC8) as for esterases, but not of p-nitrophenyl palmitate (pNPC16) or olive oil such as for lipases. Thus, the enzyme displays the original property of associating the activity of an esterase with a primary sequence showing high similarity with lipases.  相似文献   

6.
A novel lipase was isolated from a metagenomic library of Baltic Sea sediment bacteria. Prokaryotic DNA was extracted and cloned into a copy control fosmid vector (pCC1FOS) generating a library of >7000 clones with inserts of 24-39 kb. Screening for clones expressing lipolytic activity based on the hydrolysis of tributyrin and p-nitrophenyl esters, identified 1% of the fosmids as positive. An insert of 29 kb was fragmented and subcloned. Subclones with lipolytic activity were sequenced and an open reading frame of 978 bp encoding a 35.4-kDa putative lipase/esterase h1Lip1 (DQ118648) with 54% amino acid similarity to a Pseudomonas putida esterase (BAD07370) was identified. Conserved regions, including the putative active site, GDSAG, a catalytic triad (Ser148, Glu242 and His272) and a HGG motif, were identified. The h1Lip1 lipase was over expressed, (pGEX-6P-3 vector), purified and shown to hydrolyse p-nitrophenyl esters of fatty acids with chain lengths up to C14. Hydrolysis of the triglyceride derivative 1,2-di-O-lauryl-rac-glycero-3-glutaric acid 6'-methylresorufin ester (DGGR) confirmed that h1Lip1 was a lipase. The apparent optimal temperature for h1Lip1, by hydrolysis of p-nitrophenyl butyrate, was 35 degrees C. Thermal stability analysis showed that h1Lip1 was unstable at 25 degrees C and inactivated at 40 degrees C with t1/2 <5 min.  相似文献   

7.
Microbial metagenomes derived from soils are rich sources for the discovery of novel genes and biocatalysts. Fourteen environmental plasmid and seven fosmid libraries obtained from 10 German forest soils (A horizons) and six grassland soils (A and B horizons) were screened for genes conferring lipolytic activity. The libraries comprised approximately 29.3 Gb of cloned soil DNA. Partial activity-based screening of the constructed libraries resulted in the identification of 37 unique lipolytic clones. The amino acid sequences of the 37 corresponding lipolytic gene products shared 29-90% identity to other lipolytic enzymes, which were mainly uncharacterized or derived from uncultured microorganisms. Multiple sequence alignments and phylogenetic tree analysis revealed that 35 of the predicted proteins were new members of known families of lipolytic enzymes. The remaining two gene products represent two putatively new families. In addition, sequence analysis indicated that two genes encode true lipases, whereas the other genes encode esterases. The determination of substrate specificity and chain-length selectivity using different triacylglycerides and p-nitrophenyl esters of fatty acids as substrates supported the classification of the esterases.  相似文献   

8.
Mycoplasma hyopneumoniae mhp379 is a putative lipoprotein that shares significant amino acid sequence similarity with a family of bacterial thermostable nucleases. To examine the nuclease activity of mhp379, the gene was cloned and expressed in Escherichia coli following the deletion of the amino-terminal signal sequence and prokaryotic lipoprotein cleavage site and mutagenesis of the mycoplasma TGA tryptophan codons to TGG. The recombinant fusion protein yielded a 33-kDa thrombin cleavage product, corresponding in size to the mature mhp379 protein. Exonuclease activity was indicated by agarose gel electrophoresis analysis of the reaction products that were released when different nucleic acid substrates were used. Endonuclease activity was also indicated by the digestion of closed circular plasmid DNA. The recombinant mhp379 fusion protein completely digested single-stranded DNA, double-stranded DNA (dsDNA), and RNA. The optimal reaction conditions were determined with a novel nuclease assay based on the enhancement of fluorescence of SYBR green I bound to dsDNA. Optimal activity was observed in the presence of calcium ions at a concentration of 15 mM and a pH of 9.5. No nuclease activity was observed in the absence of calcium ions. Mycoplasmas do not have the ability to synthesize nucleic acid precursors, and thus, nucleases are likely to be important in the acquisition of precursors for the synthesis of nucleic acids. Homologs of an ATP-binding cassette (ABC) transport system were identified immediately downstream of the gene encoding mhp379, and two homologs of M. pneumoniae lipoprotein multigene family 2 were also identified immediately upstream. Homologs of mhp379 were identified in the sequenced genomes of a number of mycoplasma species, and in most cases the homologous ABC transport system was identified immediately downstream of the homologous gene; in several cases a homolog of M. pneumoniae lipoprotein multigene family 2 was also identified immediately upstream. These observations suggest that mhp379 comprises part of a conserved ABC transport operon in mycoplasmas and that the exonuclease activity of mhp379 may be associated with the conserved function of the ABC transport system in the import of nucleic acid precursors. This is the first study to identify the gene and characterize the activity of a mycoplasma exonuclease.  相似文献   

9.
10.
A new esterase activity from Bacillus licheniformis was characterized from an Escherichia coli recombinant strain. The protein was a single polypeptide chain with a molecular mass of 81 kDa. The optimum pH for esterase activity was 8-8.5 and it was stable in the range 7-8.5. The optimum temperature for activity was 45 degrees C and the half-life was 1 h at 64 degrees C. Maximum activity was observed on p-nitrophenyl caproate with little activity toward long-chain fatty acid esters. The enzyme had a KM of 0.52 mM for p-nitrophenyl caproate hydrolysis at pH 8 and 37 degrees C. The enzyme activity was not affected by either metal ions or sulfydryl reagents. Surprisingly, the enzyme was only slightly inhibited by PMSF. These characteristics classified the new enzyme as a thermostable esterase that shared similarities with lipases. The esterase might be useful for biotechnological applications such as ester synthesis.  相似文献   

11.
A total of 118 halophilic archaeal collection of strains were screened for lipolytic activity and 18 of them were found positive on Rhodamine agar plates. The selected five isolates were further characterized to determine their optimum esterase and lipase activities at various ranges of salt, temperature and pH. The esterase and lipase activities were determined by the hydrolysis of pNPB and pNPP, respectively. The maximum hydrolytic activities were found in the supernatants of the isolates grown at complex medium with 25% NaCl and 1% gum Arabic. The highest esterase activity was obtained at pH 8-8.5, temperature 60-65 degrees C and NaCl 3-4.5 M. The same parameters for the highest lipase activities were found to be pH 8, temperature 45-65 degrees C and NaCl 3.5-4 M. These results indicate the presence of salt-dependent and temperature-tolerant lipolytic enzymes from halophilic archaeal strains. Kinetic parameters were determined according to Lineweaver-Burk plot. The KM and V (max) values were lower for pNPP hydrolysis than those for pNPB hydrolysis. The results point that the isolates have higher esterase activity comparing to lipase activity.  相似文献   

12.
Homolog to lipolytic enzymes having the consensus sequence Gly-X-Ser-X-Gly, from the Sulfolobus solfataricus P2 genome, were identified by multiple sequence alignments. Among three potential candidate sequences, one (Est3), which displayed higher activity than the other enzymes on the indicate plates, was characterized. The gene (est 3) was expressed in Escherichia coli, and the recombinant protein (Est3) was purified by chromatographic separation. The enzyme is a trimeric protein and has a molecular weight of 32 kDa in monomer form in its native structure. The optimal pH and temperature of the esterase were 7.4 and 80 degrees C respectively. The enzyme showed broad substrate specificities toward various p-nitrophenyl esters ranging from C2 to C16. The catalytic activity of the Est3 esterase was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF) and diethyl p-nitrophenyl phosphate. Based on substrate specificity and the action of inhibitors, the Est3 enzyme was estimated to be a carboxylesterase (EC 3.1.1.1). The enzyme with methyl (+/-)-2-(3-benzoylphenyl)propionate-hydrolyzing activity to (-)-2-(3-benzoylphenyl)propionic acid displayed a moderate degree of enantioselectivity. The product, (-)-2-(3-benzoylphenyl)propionic acid, rather than its methyl ester, was obtained in 80% enantiomeric excess (e.e.(p)) at 20% conversion at 60 degrees C after a 32-h reaction. This result indicates that S. solfataricus esterase can be used for application in the synthesis of chiral compounds.  相似文献   

13.
An enzyme preparation that catalyses the deacylation of mono- and di-acyl phospholipids, galactosyl diglycerides, mono- and di-glycerides has been partially purified from potato tubers. The preparation also hydrolyses methyl and p-nitrophenyl esters and acts preferentially on esters of long-chain fatty acids. Triglycerides, wax esters and sterol esters are not hydrolysed. The same enzyme preparation catalyses acyl transfer reactions in the presence of alcohols and also catalyses the synthesis of wax esters from long-chain alcohols and free fatty acids. Gel filtration, DEAE-cellulose chromatography and free-flow electrophoresis failed to achieve any separation of the acyl-hydrolase activities towards different classes of acyl lipids (phosphatidylcholine, monogalactosyl diglyceride, mono-olein, methyl palmitate and p-nitrophenyl palmitate) or any separation of these activities from a major protein component. For each class of lipid the acyl-hydrolase activity was subject to substrate inhibition, was inhibited by relatively high concentrations of di-isopropyl phosphorofluoridate and the pH responses were changed by Triton X-100. The hydrolysis of phosphatidylcholine was stimulated 30-40-fold by Triton X-100. The specific activities of the potato enzyme with galactolipids were at least 70 times higher than those reported for a homogeneous galactolipase enzyme purified from runner bean leaves. The possibility that a single lipolytic acyl-hydrolase enzyme is responsible for the deacylation of several classes of acyl lipid is discussed.  相似文献   

14.
15.
Jiang X  Xu X  Huo Y  Wu Y  Zhu X  Zhang X  Wu M 《Archives of microbiology》2012,194(3):207-214
A deep-sea sediment metagenomic library was constructed and screened for lipolytic enzymes by activity-based approach. Nine novel lipolytic enzymes were identified, and the amino acid sequences shared 56% to 84% identity to other lipolytic enzymes in the database. Phylogenetic analysis showed that these enzymes belonged to family IV lipolytic enzymes. One of the lipolytic enzymes, Est6, was successfully cloned and expressed in Escherichia coli Rosetta in a soluble form. The recombinant protein was purified by Ni-nitrilotriacetic affinity chromatography column and characterized using p-nitrophenyl esters with various chain lengths. The est6 gene consisted of 909 bp that encoded 302 amino acid residues. Est6 was most similar to a lipolytic enzyme from uncultured bacterium (ACL67845, 61% identity) isolated from the South China Sea marine sediment metagenome. The characterization of Est6 revealed that it was a cold-active esterase and exhibited the highest activity toward p-nitrophenyl butyrate (C4) at 20°C and pH 7.5.  相似文献   

16.
Through the use of molecular and biochemical experiments and bioinformatic tools, this work demonstrates that the PA4921 gene of the Pseudomonas aeruginosa PAO1 genome is a gene responsible for cholinesterase (ChoE) activity. Similar to the acetylcholinesterase (AchE) of Zea mays, this ChoE belongs to the SGNH hydrolase family. In mature ChoE, i.e., without a signal peptide, (18)Ser, (78)Gly, (127)N, and (268)H are conserved aminoacyl residues. Acetylthiocholine (ATC) and propionylthiocholine (PTC) are substrates of this enzyme, but butyrylcholine is an inhibitor. The enzyme also catalyzes the hydrolysis of the artificial esters p-nitrophenyl propionate (pNPP) and p-nitrophenyl butyrate (pNPB) but with lower catalytic efficiency with respect to ATC or PTC. The second difference is that pNPP and pNPB did not produce inhibition at high substrate concentrations, as occurred with ATC and PTC. These differences plus preliminary biochemical and kinetic studies with alkylammonium compounds led us to propose that this enzyme is an acetylcholinesterase (AchE) or propionylcholinesterase. Studies performed with the purified recombinant enzyme indicated that the substrate saturation curves and the catalytic mechanism are similar to those properties described for mammalian AchEs. Therefore, the results of this work suggest that the P. aeruginosa ChoE is an AchE that may also be found in Pseudomonas fluorescens.  相似文献   

17.
The gene encoding an esterase (HDE) was cloned from an oil-degrading bacterium, strain HD-1. HDE is a member of the hormone-sensitive lipase family and composed of 317 amino acid residues with a molecular weight of 33,633. The HDE-encoding gene was expressed in Escherichia coli, and the recombinant protein was purified and characterized. Amino acid sequence analysis indicated that the methionine residue was removed from its NH(2)-terminus. The good agreement of the molecular weights estimated by SDS-PAGE (35,000) and gel filtration (38,000) suggests that it acts in a monomeric form. HDE showed hydrolytic activity towards p-nitrophenyl esters of fatty acids with an acyl chain length of 2 to 14 and tributyrin, whereas it showed little hydrolytic activity towards p-nitrophenyl oleate (C(18)), tricaprylin and triolein. Determination of the kinetic parameters for the hydrolyses of the p-nitrophenyl substrates from C(2) to C(14) indicated that HDE shows a relatively broad substrate specificity. However, comparison of the k(cat)/K(m) values indicated that the C(10)-C(14) substrates are the most preferred ones. Such a preference for substrates with long acyl chains may be a characteristic of HDE.  相似文献   

18.
Functional screening for lipolytic enzymes from a metagenomic library (origin: Jae Sawn hot spring, Thailand) resulted in isolation of a novel patatin-like phospholipase (PLP) and an esterase (Est1). PLP contained four conserved domains similar to other patatin-like proteins with lipid acyl hydrolase activity. Likewise, sequence alignment analysis revealed that Est1 can be classified as a family V bacterial lipolytic enzyme. Both PLP and Est1 were expressed heterologously as soluble proteins in E. coli and exhibited more than 50% of their maximal activities at alkaline pH, of 7-9 and 8-10, respectively. In addition, both enzymes retained more than 50% of maximal activity in the temperature range of 50-75 degrees C, with optimal activity at 70 degrees C and were stable at 70 degrees C for at least 120 min. Both PLP and Est1 exhibited high V(max) toward p-nitrophenyl butyrate. The enzymes had activity toward both short-chain (C(4) and C(5)) and long chain (C(14) and C(16)) fatty acid esters. The isolated enzymes, are therefore, different from other known patatin-like phospholipases and esterases, which usually show no activity for substrates longer than C(10). We suggest that PLP and EstA enzymes are novel and have a; b potential use in industrial applications.  相似文献   

19.
基于GenBank公布的枯草芽胞杆菌168基因组序列,克隆表达了30个预测的酯水解酶基因。结果发现:其中7个酶对对硝基苯酚酯表现出明显的酯水解活力。它们在α/β水解酶家族中分属5个不同的亚家族。通过显色底物和pH指示剂进行的高通量筛选,分别绘制了这7个酶的底物指纹谱。考察了酶催化手性酯水解反应的对映选择性,结果表明:对硝基苄基酯酶PnbA和S-脱乙酰化酶Cah对手性醇的乙酸酯具有较广的底物谱,而PnbA和羧酸酯酶Nap分别对DL-薄荷醇乙酸酯和2-氯-1-苯乙醇乙酸酯/2-萘乙醇乙酸酯有极好的对映选择性(E>200)。此外,发现酯酶YitV催化2-氯-1-苯乙醇乙酸酯水解的反应遵循反-Kazlauskas规则。  相似文献   

20.
The hydrolysis of cholesteryl esters contained in plasma low density lipoprotein was reduced in cultured fibroblasts derived from a patient with cholesteryl ester storage disease, an inborn error of metabolism in which lysosomal acid lipase activity is deficient. While these mutant cells showed a normal ability to bind low density lipoprotein at its high affinity cell surface receptor site, to take up the bound lipoprotein through endocytosis, and to hydrolyze the protein component of the lipoprotein in lysosomes, their defective lysosomal hydrolysis of the cholesteryl ester component of the lipoprotein led to the accumulation within the cell of unhydrolyzed cholesteryl esters, the fatty acid distribution of which resembled that of plasma lipoprotein. When the cholesteryl ester storage disease cells were incubated with low density lipoprotein, the reduced rate of liberation of free cholesterol by these mutant cells was associated with a delay in the occurrence of two lipoprotein-mediated regulatory events, suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and activation of endogenous cholesteryl ester formation. In contrast to their defective hydrolysis of exogenously derived lipoprotein-bound cholesteryl esters, the choleseryl ester storage disease cells showed a normal rate of hydrolysis of cholesteryl esters that had been synthesized within the cell. These data lend support to the concept that in cultured human fibroblasts cholesteryl esters entering the cell bound to low density lipoprotein are hydrolyzed within the lysosome and that one of the functions of this intracellular organelle is to supply the cell with free cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号