首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we demonstrated that bcl-2 overexpression in human melanoma cells consistently enhanced the activity of multiple metastasis-related proteinases, in vitro cell invasion, and in vivo tumor growth. In particular, by using the M14 parental cell line, the MN8 control clone, and two bcl-2 overexpressing derivatives, we found that bcl-2 overexpressing cells exposed to hypoxia, when compared to parental cells, expressed higher level of several metalloproteases (MMPs) such as MMP-2, MMP-7, MT1-MMP, and tissue inhibitors of metalloproteases-1 and -2. Moreover, bcl-2 overexpression in melanoma cells enhanced in vitro invasion on matrigel and, in vivo tumor growth. The more aggressive behavior of bcl-2 transfectants tumors is significantly associated to an increase in MMP-2 expression as well as in a more elevated microvessel density as compared to the parental line. Taken together, our data suggest that bcl-2 plays a pivotal role in the regulation of molecules associated with the migratory and invasive phenotype, contributing, in cooperation to hypoxia, to tumor progression.  相似文献   

2.
Abstract: Expression of the protooncogene bcl-2 inhibits both apoptotic and in some cases necrotic cell death in many cell types, including neural cells, and in response to a wide variety of inducers. The mechanism by which the Bcl-2 protein acts to prevent cell death remains elusive. One mechanism by which Bcl-2 has been proposed to act is by decreasing the net cellular generation of reactive oxygen species. To evaluate this proposal, we measured activities of antioxidant enzymes as well as levels of glutathione and pyridine nucleotides in control and bcl-2 transfectants in two different neural cell lines—rat pheochromocytoma PC12 and the hypothalamic GnRH cell line GT1-7. Both neural cell lines overexpressing bcl-2 had elevated total glutathione levels when compared with control transfectants. The ratios of oxidized glutathione to total glutathione in PC12 and GT1-7 cells overexpressing bcl-2 were significantly reduced. In addition, the NAD+/NADH ratio of bcl-2 -expressing PC12 and GT1-7 cells was two- to threefold less than that of control cell lines. GT1-7 cells overexpressing bcl-2 had the same level of glutathione peroxidase, catalase, superoxide dismutase, and glutathione reductase activities as control cells. PC12 cells overexpressing bcl-2 had a twofold increase in superoxide dismutase and catalase activity when compared with matched control transfected cells. The levels of glutathione peroxidase and glutathione reductase in PC12 cells overexpressing bcl-2 were similar to those of control cells. These results indicate that the overexpression of bcl-2 shifts the cellular redox potential to a more reduced state, without consistently affecting the major cellular antioxidant enzymes.  相似文献   

3.
4.
This study shows that high keratin 18 (K18) expression in tumor cells is associated with reduced invasiveness in vitro and lack of tumorigenicity in nude mice. We previously showed that high K18 expression correlated with a good prognosis and that reducing K18 expression increased the aggressiveness of established breast cancer cell lines. To confirm these observations, we transfected the human K18 gene into the human breast cancer cell line MDA-MB-231 and isolated a stable overexpressing clone. The forced K18 expression was associated with a complete loss of the previously strong vimentin expression in the parent cell line, induction of the K18 dimerization partner K8, and up-regulation of adhesion proteins. These changes were accompanied by a dramatic reduction in the aggressiveness of the K18 transfectants in vitro and in vivo. We conclude that forced reexpression of K18 causes at least partial redifferentiation of the tumor cell, followed by a corresponding regression of malignant phenotype.  相似文献   

5.
Four primary antioxidant enzymes were measured in both human and rat glioma cells. Both manganese-containing superoxide dismutase (MnSOD) and copper-zinc-containing superoxide dismutase (CuZnSOD) activities varied greatly among the different glioma cell lines. MnSOD was generally higher in human glioma cells than in rat glioma cells and relatively higher than in other tumor types. High levels of MnSOD in human glioma cells were due to the high levels of expression of MnSOD mRNA and protein. Heterogeneous expression of MnSOD was present in individual glioma cell lines and may be due to subpopulations or cells at different differentiation stages. Less difference in CuZnSOD, catalase, or glutathione peroxide was found between human and rat glioma cells. The human glioma cell lines showed large differences in sensitivity to the glutathione modulating drugs 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) and buthionine sulfoximine (BSO). A good correlation was found between sensitivity to BCNU and the activities of catalase in these cell lines. Only one cell line was sensitive to BSO and this line had low CuZnSOD activity.  相似文献   

6.
Karyotypic destabilization in cells of Chinese hamster fibroblasts CHL V-79 RJK with ectopically overexpressed antiapoptotical human bcl-2 gene from pSFFV-bcl-2 vector has been analysed. Analysis of G-banded metaphase chromosomes from 4 clones with different levels of bcl-2 expression revealed an increased level of chromosomal instability in bcl-2-transfected cells. Besides, an increased percentage of aneu- and polyploid cells and high level of cells with different chromosomal aberrations was observed. The degree of karyotypic instability positively correlated with the level of bcl-2 expression in bcl-2-transfected cells. Cells of a clone with the highest bcl-2 expression at the 13th passage of cultivation displayed an almost 100% polyploidization and the presence of specific aberrations and a tricentric marker chromosome. Selection of cells with non-random specific chromosome changes was observed in pSFFV-bcl-2-transfected CHL V-79 RJK cells in the process of their long-term cultivation. By contrast, cells of the parental cell line, as well as the control pSFFV-neo transfectants, displayed a stable karyotype throughout the long period of cultivation. It is important that the presence of morphological markers of gene amplifications--DOO, DM, MH--was observed in bcl-2-transfected cells. These findings suggest that the overexpression of antiapoptotic human bcl-2 gene may result in destabilization of the karyotype structure in cells of Chinese hamster fibroblasts CHL V-79 RJK. The character and level of destabilization correlate with the level of ectopic overexpression of this gene.  相似文献   

7.
Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures   总被引:4,自引:0,他引:4  
The influence of Bcl-2 expression on the suppression of apoptosis during the cultivation of an NS0 cell line expressing a chimeric antibody was investigated. Following selection of transfectants in medium containing G418, Western analysis revealed evidence of some up-regulation of endogenous Bcl-2 expression even in the control vector transfectants. Cultivation of the two cell lines in suspension batch cultures clearly demonstrated the enhanced robustness of the bcl-2 vector transfected cells. Suppression of apoptosis resulted in an approximately 20% increase in maximum viable cell number, and a doubling in culture duration compared to the control transfected cells. However, despite the significant affect on viability, Bcl-2 expression did not result in an increase in final antibody titre in comparison with the control cell line. Exposure of cells to various nutrient limited conditions further emphasised the influence of Bcl-2 on cell survival. After 3 days of exposure to serum, glucose, glutamate and asparagine deprivation, the viable cell number and viability were significantly higher in the bcl-2 transfected cell line. When control cells were deprived of all amino acids, there was a complete loss of viability and viable cell number within 3 days. By contrast, the bcl-2 transfected cell line retained greater than 75% of the initial viable cell number and about 70% viability. In response to exposure to 8 mM thymidine (a cytostatic agent) the control cell line underwent complete loss of viability and viable cell number after 6 days. This compared with 18 days for complete loss of viability in the bcl-2 transfected cell line. As under batch culture conditions, there was no difference between the two cell lines in final antibody titre, which indicated that MAb synthesis is limited by nutrient availability during the latter stages of culture in both cases. When fed batch cultures were carried out using a concentrated essential amino acid feed, the bcl-2 cell line exhibited a 60% increase in maximum viable cell number and a 50% increase in culture duration, when compared to the control cell line. Moreover, the bcl-2 cell line exhibited a greater than 40% increase in maximum antibody titre.  相似文献   

8.
Human melanoma line MZ2-MEL expresses several antigens recognized by autologous cytolytic T lymphocytes (CTL). As a first step towards the cloning of the gene coding for one of these antigens, we tried to obtain transfectants expressing the antigen. The DNA recipient cell was a variant of MZ2-MEL which had been selected with a CTL clone for the loss of antigen E. It was cotransfected with genomic DNA of the original melanoma line and with selective plasmid pSVtkneo. Geneticin-resistant transfectants were obtained at a frequency of 2 × 10–4. These transfectants were then screened for their ability to stimulate the production of tumor necrosis factor by the anti-E CTL clone. One transfectant expressing antigen E was identified among 70 000 drug-resistant transfectants. Its sensitivity to lysis by the anti-E CTL was equal to that of the original melanoma cell line. When this transfectant was submitted to immunoselection with the anti-E CTL clone, the resulting antigen-loss variants were found to have lost several of the transfected pSVtkneo sequences. This indicated that the gene coding for the antigen had been integrated in the vicinity of pSVtkneo sequences, as expected for cotransfected DNA. Address correspondence and offprint requests to: T. Boon.  相似文献   

9.
The sensitivity of HepG2 cells overexpressing catalase in either the cytosolic or mitochondrial compartment to tumor necrosis factor-alpha (TNF-alpha) and cycloheximide was studied. Cells overexpressing catalase in the cytosol (C33 cells) and especially in mitochondria (mC5 cells) were more sensitive to TNF-alpha-induced apoptosis than were control cells (Hp cells). The activities of caspase-3 and -8 were increased by TNF-alpha, with the highest activities found in mC5 cells. Sodium azide, an inhibitor of catalase, reduced the increased sensitivity of mC5 and C33 cells to TNF-alpha to the level of toxicity found with control Hp cells. Azide also decreased the elevated caspase-3 activity of mC5 cells. A pan-caspase inhibitor prevented the TNF-alpha-induced apoptosis and toxicity produced by catalase overexpression. Addition of H(2)O(2) prevented TNF-alpha-induced apoptosis and caspase activation, an effect prevented by simultaneous addition of catalase. TNF-alpha plus cycloheximide increased ATP levels, with higher levels in C33 and mC5 cells compared with Hp cells. TNF-alpha did not produce apoptosis in mC5 cells maintained in a low energy state. TNF-alpha signaling was not altered by the overexpression of catalase, as activation of nuclear factor kappaB and AP-1 by TNF-alpha was similar in the three cell lines. These results suggest that catalase, overexpressed in the cytosolic or especially the mitochondrial compartment, potentiates TNF-alpha-induced apoptosis and activation of caspases by removal of H(2)O(2).  相似文献   

10.
The role of seleno-glutathione peroxidase (GSHPx; EC 1.11.1.9) in the cellular defense against oxidative stress was selectively investigated in novel cell models. Expression vectors designed to overexpress human GSHPx efficiently in a broad range of mammalian cells were used to transfect T47D human breast cells which contain very low levels of endogenous GSHPx. Several stable transfectants expressing GSHPx to various extents, up to 10-100 times more than parental cells, were isolated and characterized. Growth inhibition kinetics following transient exposure to increasing concentrations of H2O2, cumene hydroperoxide or menadione (an intracellular source of free radicals and reactive oxygen intermediates) showed that transfectants overexpressing GSHPx were considerably more resistant than control T47D cell derivatives to each of these oxidants. A sensitive DNA end-labeling procedure was used as a novel approach to compare relative extents of DNA strand breakage in these cells. In contrast to the extensive DNA damage induced in control transfectants by 1-h exposure to cytotoxic concentrations of menadione, the extent of DNA breakage detected in GSHPx-rich transfectants was remarkably reduced (6- to 9-fold, p less than 0.005).  相似文献   

11.
Human bcl-2 DNA was introduced into mouse hybridoma 2E3 cells and expressed at a high level by using BCMGSneo vector, which reportedly amplifies as multiple copies in the cells independently of their chromosomes. The high expression of bcl-2 in BCMGSneo-bcl-2 transfectants was confirmed by western blotting. In batch cultures, the overexpression of bcl-2 raised the maximum viable cell density by 45%, delayed the initiation of apoptosis by 2 days, and prolonged the viable culture period by 4 days. The delayed initiation of apoptosis was detected by emergence of the ladder pattern on DNA electrophoresis and increase of the dead cell number. The bcl-2 transfectants produced lgG(1) fourfold per batch culture in comparison with 2E3 cells transfected with BCMGSneo but not with bcl-2: a little less than twofold due to the improved survival of the cells and more than twofold due to the enhanced lgG(1) production rate per cell of the bcl-2 transfectants. The method to engineer hybridoma cells genetically with bcl-2 using BCMGSneo vector for increasing viability and productivity would be widely applied for improving antibody productivity of hybridoma cultures. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
The catalase activity of cultured rat hepatocytes was inhibited by 90% pretreatment with 20 mM aminotriazole without effect on the activities of glutathione peroxidase or glutathione reductase, or on the viability of the cells over the subsequent 24 h. Glutathione reductase was inhibited by 85% by pretreatment with 300 microM 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) without effect on glutathione peroxidase, catalase, or on viability. Both pretreatments sensitized the hepatocytes to the cytotoxicity of H2O2 generated either by glucose oxidase (0.05-0.5 units/ml) or by the autoxidation of the one-electron-reduced state of menadione (50-250 microM). Aminotriazole pretreatment had no effect on the GSH content of the hepatocytes. BCNU reduced GSH levels by 50%. Depletion of GSH levels to less than 20% of control by treatment with diethyl maleate, however, did not sensitize the cells to either glucose oxidase or menadione, indicating that the effect of BCNU is related to inhibition of the GSH-GSSG redox cycle rather than to the depletion of GSH. With glucose oxidase, most of the cell killing in hepatocytes pretreated with either aminotriazole or BCNU occurred between 1 and 3 h. The antioxidant diphenylphenylenediamine (DPPD) had no effect on viability at 3 h. Catalase added to the culture medium 1 h after the addition of glucose oxidase prevented the cell killing measured at 3 h. The sulfhydryl reagents dithiothreitol (200 microM), N-acetyl-L-cysteine (4 mM), and alpha-mercaptopropionyl-L-glycine (2.5 mM) prevented the cell killing with exogenous H2O2 in hepatocytes sensitized by the inhibition of catalase or glutathione reductase. With menadione, there was no killing of nonpretreated hepatocytes at 1 h, and DPPD did not prevent the cell death after 3 h. Aminotriazole pretreatment enhanced the cell killing at 3 h but not at 1 h, and DPPD was not protective. Catalase added to the medium at 1 h inhibited the cell death measured at 3 h. In contrast, menadione killed hepatocytes pretreated with BCNU within 1 h. DPPD prevented cell death at 1 h, and there was evidence of lipid peroxidation in the accumulation of malondialdehyde in the culture medium. Catalase added with menadione did not prevent the cell killing at 1 h but did prevent it at 3 h. These data indicate that catalase and the GSH-GSSG cycle are active in the defense of hepatocytes against the toxicity of H2O2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
COS, myeloma and HeLa cells, which are commonly used for protein production by cell culture, were transfected with human bcl-2 gene encoded on the shuttle vector BCMGS. Expression of human bcl-2 improved survival of cells remarkably, mildly, or negligibly for COS, myeloma, and HeLa, respectively. Four clones were obtained from the human bcl-2 expressing cell population of COS cells. They expressed human bcl-2 almost at the same level. The viable cell numbers were 6, 2.5, 2.5, and 0.8 times as many for the clones #8, #5, #6, and #7, respectively, as for the control COS cells, when they were cultured at low (0.2%) serum concentration for 9 days. The bcl-2 overexpressing COS cells showed morphology different from that of the control COS cells in serum limited condition. When transfected with mouse lambda protein gene carried by an SV40-derived vector, clone #8 of the bcl-2 transfected COS cells continued the transient expression of lambda protein longer than the control COS cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
15.
During the course of their differentiation, embryonic lens fibers undergo loss of their cytoplasmic organelles and nuclei. The denucleation process bears similarities to the nuclear breakdown that occurs during apoptosis. This has given rise to the hypothesis that this denucleation is analogous to apoptosis, but without the plasma membrane changes characteristic of apoptotic cell death. Previous work has shown that several members of the apoptotic cascade are active during denucleation. Here, we have overexpressed the anti-apoptotic molecule bcl-2 in developing lenses of the 8-day-old chick embryo in ovo, using the replication-competent retrovirus RCAS. We find that lenses overexpressing bcl-2 show varying degrees of distortion in comparison with untreated and negative insert controls, including a more spherical shape and disorganized fiber cells. All overexpressing lenses showed significantly higher numbers of smaller nuclei in the lens core, where denucleation begins. There was no change in cell size or pattern of proliferation. These in vivo results were confirmed in vitro using lens epithelial cell cultures, which differentiate into lentoids. The lentoids in treated cultures showed the same effect on nuclear number and size. We further found that in lenses overexpressing bcl-2 there was a reduction in the activation of caspase-9 and the cleavage of the caspase substrate DFF45, and, in the lens core, a failure of the nuclear chromatin to condense. These results provide strong support for the view that embryonic lens fiber cell denucleation is analogous to the nuclear degradation that occurs during apoptosis, and that similar control pathways are involved in both these phenomena.  相似文献   

16.
AK-5 tumour cells have been shown to undergo apoptosis in vitro and in vivo. The efficient killing of tumour cells by necrosis and apoptosis leads to spontaneous regression of the tumour. To investigate a possible involvement of caspase-2/Nedd-2 protease in AK-5 apoptosis, we introduced Nedd-2 gene in antisense orientation and showed inhibition of tumour cell apoptosis. Similarly introduction of the bcl-2 gene in tumour cells also inhibited the apoptotic programme. NK cells which have previously been shown to be the effector cells also fail to induce apoptosis in Nedd-2 antisense and bcl-2 transfected clones whereas NK mediated cytotoxic activity is not altered in the transfectants. These results suggest participation of Nedd-2 protease in the induction of apoptosis in AK-5 cells leading to tumour regression. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Although it is well known that Bcl-2 can prevent apoptosis, the Bcl-2's anti-apoptotic mechanism is not fully understood. Here, we investigate the mechanism of oxidant-induced cell death and to investigate the role of Bcl-2 in the tert-butyl hydroperoxide (t-BuOOH)-induced oxidant injury in Rat-1 fibroblasts and their bcl-2 transfected counterparts, b5 cells. Treatment with t-BuOOH causes mitochondrial disfunction and induced morphological features consistent with apoptosis more markedly in Rat-1 cells than in b5 cells. The hydroperoxide t-BuOOH at concentrations less than 100 nM for as long as 48 h or with higher concentrations (up to 100 microM) for only 3 h induces death in Rat-1 cells, whereas their bcl-2 transfectants were significantly resistant to cytotoxicity by both time and all concentration other than 100 microM. The similar results were obtained also for DNA strand cleavages as detected by TUNEL stain. The bcl-2 transfectants significantly suppressed t-BuOOH-induced increases in both lipid peroxidation and caspase-3 activation 3 and 1 h after t-BuOOH exposure, respectively, but failed to suppress either caspase-1 activation or an enhanced production of the intracellular reactive oxygen species (ROS). Intracellular uptake of [1-(14)C] ascorbic acid (Asc) into the bcl-2 transfectants was superior to that into the non-transfectants always under examined conditions regardless of serum addition to culture medium and cell density. Upregulation of Bcl-2 proteins was rapidly induced after t-BuOOH exposure in the transfectants, but not in non-transfectants, and restored till 24 h to the normal Bcl-2 level. Thus suppressions of both lipid peroxidation and the subsequent cell death events such as caspase-3 activation and DNA cleavage were concerned with the inhibitory effects of Bcl-2 on the t-BuOOH-induced cytotoxicity. And some of these events may correlate with Bcl-2 expression-induced partial enhanced anti-oxidant cellular ability including enrichment of intracellular Asc and oxidative stress-induced upregulation of Bcl-2 protein. On the other hand, ROS production and caspase-1 activation were not related to cytoprotection by Bcl-2.  相似文献   

18.
目的:研究喉癌细胞系Hep-2中CD133的表达;比较CD133~+细胞、未分选细胞、CD133~-细胞的体外增殖、克隆形成能力及其在裸鼠体内的成瘤能力;探讨喉癌肝细胞对化疗药物顺铂(cisplatin,DDP)的抵抗作用。方法:采用流式细胞仪检测CD133在Hep-2细胞系中的表达;免疫磁珠分选技术纯化CD133阳性肿瘤细胞;使用四甲基偶氮唑蓝(MTT)法和平板克隆形成实验检测分选所得各细胞亚群细胞以及未分选细胞的体外增殖能力和克隆形成能力;将CD133阳性肿瘤细胞和CD133阴性肿瘤细胞以一定的数量级注入重症联合免疫缺陷小鼠腹部皮下,比较其成瘤差异性;此外,使用DDP干预分选所得各细胞亚群细胞,检测比较CD133阳性肿瘤细胞和CD133阴性肿瘤细胞的体外增殖能力与体内成瘤能力。结果:流式细胞仪示CD133在Hep-2细胞系中呈微量恒定表达,表达概率为40.12±1.32%;CD133阳性肿瘤细胞的体外增殖能力显著强于CD133阴性肿瘤细胞的增殖能力(P0.05),且其克隆形成能力也强于CD133阴性肿瘤细胞;体内成瘤实验结果显示CD133阳性肿瘤细胞较CD133阴性细胞、未分选细胞在重症联合免疫缺陷小鼠体内具有更强的成瘤性(P0.05);在DDP的干预下,相对于CD133阴性肿瘤细胞,CD133阳性肿瘤细胞表现出更强的抵抗力。结论:喉癌Hep-2细胞系中,CD133阳性癌细胞具有强的体外增殖能力、体内成瘤能力且对化疗药物具有较强的抵抗性,可作为喉癌肿瘤干细胞的标志之一。  相似文献   

19.
Abstract: The protooncogene bcl-2 rescues cells from a wide variety of insults. Recent evidence suggests that the mechanism of action of Bcl-2 involves antioxidant activity. The involvement of free radicals in ischemia/reperfusion injury to neural cells has led us to investigate the effect of Bcl-2 in a model of delayed neural cell death. We have examined the survival of control and bcl-2 transfectants of a hypothalamic tumor cell line, GT1-7, exposed to potassium cyanide in the absence of glucose (chemical hypoxia/aglycemia). After 30 min of treatment, no loss of viability was evident in control or bcl-2 transfectants; however, Bcl-2-expressing cells were protected from delayed cell death measured following 24–72 h of reoxygenation. Under these conditions, the rate and extent of ATP depletion in response to treatment with cyanide in the absence of glucose and the rate of recovery of ATP during reenergization were similar in control and Bcl-2-expressing cells. Bcl-2-expressing cells were protected from oxidative damage resulting from this treatment, as indicated by significantly lower levels of oxidized lipids. Mitochondrial respiration in control but not Bcl-2-expressing cells was compromised immediately following hypoxic treatment. These results indicate that Bcl-2 can protect neural cells from delayed death resulting from chemical hypoxia and reenergization, and may do so by an antioxidant mechanism. The results thereby provide evidence that Bcl-2 or a Bcl-2 mimetic has potential therapeutic application in the treatment of neuropathologies involving oxidative stress, including focal and global cerebral ischemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号