首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel 3D microstructural model is proposed to investigate the relationship between morphology and mechanical properties of trabecular bone. Open and closed cell geometries were selected with varying volume fractions and degrees of anisotropy that simulate the architectures of human cancellous bone over a broad range of anatomical locations. Finite element models of both cells were developed using beams and shells. Volume fraction and mean intercept length were calculated analytically and the effective elastic tensors were computed with linear tissue properties and periodic boundary conditions. Distinct, but strong relationships were obtained between fabric and the elastic tensors for open and closed cell geometries, which bound the experimental results obtained for human bone and support the relevance of the selected model to address trabecular bone fragility.  相似文献   

2.
A novel 3D microstructural model was proposed and validated in part I of this publication. In part II, the model was used to identify the yield surface of a representative volume element of human trabecular bone as a function of volume fraction and degree of anisotropy. Finite element models of open and closed cells geometries were used to calculate effective yield stresses for a variety of loading cases with periodic boundary conditions. The postyield behaviour of the trabecular tissue was assumed from data available for cortical tissue. The yield stresses defined by a 0.2% offset in the global stress-strain curve were fit to an orthotropic Hill criterion and the parameters of the surface calculated. Similarly to the previous elastic analysis, distinct but strong relationships were obtained between volume fraction, fabric and the yield surface parameters for both the open and closed cell geometries. This finding suggests that volume fraction and fabric may be used to predict the initiation of mechanical damage in human trabecular bone at the continuum level.  相似文献   

3.
In the perspective of predicting mechanical from morphological properties of human trabecular bone, the theoretical and experimental relationships between volume fraction, fabric and elastic properties were reviewed.Five data sets of human trabecular bone and two data sets of idealized cells were obtained from various investigators and analyzed statistically with one isotropic and four anisotropic models. For each model, multiple linear regressions were performed to fit the components of both the compliance and the stiffness tensors using volume fraction and in some cases fabric. The adjusted coefficients of determination of the regressions and the average relative errors of the reported versus the predicted tensor norms were calculated. The three anisotropic models that implied a log transformation of the data showed the best results. Excluding the idealized cell data, the adjusted coefficients of determination of these models ranged from 0.80 to 0.95 for the compliance and from 0.80 to 0.94 for the stiffness tensors, while the average relative errors varied between 16% and 55% for the compliance and between 25% and 62% for the stiffness data. The use of volume fraction alone in the isotropic model decreased the adjusted coefficients of determination by 0.03-0.25 and increased the average relative errors by 5-27%.This review confirms the potential of morphology-elasticity relationships for estimation of elastic properties of human trabecular bone using peripheral quantitative computed tomography or magnetic resonance imaging, but emphasizes the need for standardized measurements of mechanical properties at both continuum and tissue level.  相似文献   

4.
An alternative concept of the relationship between morphological and elastic properties of trabecular bone is presented and applied to human tissue from several anatomical locations using a digital approach. The three-dimensional morphology of trabecular bone was assessed with a microcomputed tomography system and the method of directed secants as well as the star volume procedure were used to compute mean intercept length (MIL) and average bone length (ABL) of 4 mm cubic specimens. Assuming isotropic elastic properties for the trabecular tissue, the general elastic tensors of the bone specimens were determined using the homogenization method and the closest orthotropic tensors were calculated with an optimization algorithm. The assumption of orthotropy for trabecular bone was found to improve with specimen size and hold within 6.1 percent for a 4 mm cube size. A strong global relationship (r2 = 0.95) was obtained between fabric and the orthotropic elastic tensor with a minimal set of five constants. Mean intercept length and average bone length provided an equivalent power of prediction. These results support the hypothesis that the elastic properties of human trabecular bone from an arbitrary anatomical location can be estimated from an approximation of the anisotropic morphology and a prior knowledge of tissue properties.  相似文献   

5.
Fabric and compliance tensors of a cube of cancellous bone with a complicated three-dimensional trabecular structure were obtained for trabecular surface remodeling by using a digital image-based model combined with a large-scale finite element method. Using mean intercept length and a homogenization method, the fabric and compliance tensors were determined for the trabecular structure obtained in the computer remodeling simulation. The tensorial quantities obtained indicated that anisotropic structural changes occur in cancellous bone adapting to the compressive loading condition. There were good correlations between the fabric tensor, bone volume fraction, and compliance tensor in the remodeling process. The result demonstrates that changes in the structural and mechanical properties of cancellous bone are essentially anisotropic and should be expressed by tensorial quantities.  相似文献   

6.
Fabric and compliance tensors of a cube of cancellous bone with a complicated three-dimensional trabecular structure were obtained for trabecular surface remodeling by using a digital image-based model combined with a large-scale finite element method. Using mean intercept length and a homogenization method, the fabric and compliance tensors were determined for the trabecular structure obtained in the computer remodeling simulation. The tensorial quantities obtained indicated that anisotropic structural changes occur in cancellous bone adapting to the compressive loading condition. There were good correlations between the fabric tensor, bone volume fraction, and compliance tensor in the remodeling process. The result demonstrates that changes in the structural and mechanical properties of cancellous bone are essentially anisotropic and should be expressed by tensorial quantities.  相似文献   

7.
Two- and three-dimensional structural models of the vertebral body have been used to estimate the mechanical importance of parameters that are difficult to quantify experimentally such as lattice disorder, trabecular thickness, trabecular spacing, connectivity, and fabric. Many of the models that investigate structure–function relationships of the vertebral body focus only on the trabecular architecture and neglect solid–fluid interactions. We developed a cellular solid model composed of two idealized unit cell geometries to investigate the continuum and micro-structural properties of human vertebral cancellous bone in a mathematically tractable model. Using existing histomorphological data we developed structure–function relationships for the mechanical properties of the solid phase, estimated the micro-structural strains, and predicted the fluid flow characteristics. We found that the micro-structural strains may be 1.7 to 2.2 times higher than the continuum level strains between the ages of 40 and 80. In addition, the predicted permeability agrees well with the experimental data.  相似文献   

8.
Motivated by the role of damage in normal and pathological conditions of trabecular bone, a novel 3D constitutive law was developed that describes anisotropic elasticity and the rate-independent degradation in mechanical properties resulting from the growth of cracks or voids in the trabecular tissue. The theoretical model was formulated within the framework of continuum damage mechanics and based on two fabric tensors characterizing the local trabecular morphology. Experimental validation of the model was achieved by uniaxial and torsional testing of waisted bovine trabecular bone specimens. Strong correlations were found between cumulated permanent strain, reduction in elastic moduli and nonlinear postyield stress which support the hypothesis that these variables reflect the same underlying damage process.  相似文献   

9.
A morphological model of vertebral trabecular bone   总被引:3,自引:0,他引:3  
In their micro-structures, typical natural cellular materials such as vertebral trabecular bone have a network of doubly tapered struts, thickening near the strut joints. However, past analytical models for vertebral trabecular bone do not take account of the effect of strut taper on the mechanical properties.This paper presents an analytical cell model comprised of doubly tapered struts to predict the global mechanical properties of vertebral trabecular bone. The predicted results for male, female, and both sexes fit the experimental data well. By considering several strut taper geometries, it is shown that the horizontal Young's modulus and the horizontal uniaxial collapse stress are, in some cases, approximately 1.8- and 2.2-fold higher, respectively, than those of the uniform strut model. This finding illustrates the importance of increased trabecular thickening near the strut joints (i) for improving the accuracy of calculating the mechanical properties and (ii) for the effective treatment of aged bone using drug therapy. It also highlights the need to combine trabecular architecture measurements with information about the morphology near the strut joints.  相似文献   

10.
This paper focuses on the ultrastructure of bone at a single lamella level. At this scale, collagen fibrils reinforced with apatite crystals are aligned preferentially to form a lamella. At the next structural level, such lamella are stacked in different orientations to form either osteons in cortical bone or trabecular pockets in trabecular bone. We use a finite element model, which treats small strain elasticity of a spatially random network of collagen fibrils, and compute anisotropic effective stiffness tensors and deformations of such a single lamella as a function of fibril volume fractions (or porosities), prescribed microgeometries, and fibril geometric and elastic properties.  相似文献   

11.
The apparent stiffness tensor is an important mechanical parameter for characterizing trabecular bone. Previous studies have modeled this parameter as a function of mechanical properties of the tissue, bone density, and a second-order fabric tensor, which encodes both anisotropy and orientation of trabecular bone. Although these models yield strong correlations between observed and predicted stiffness tensors, there is still space for reducing accuracy errors. In this paper, we propose a model that uses fourth-order instead of second-order fabric tensors. First, the totally symmetric part of the stiffness tensor is assumed proportional to the fourth-order fabric tensor in the logarithmic scale. Second, the asymmetric part of the stiffness tensor is derived from relationships among components of the harmonic tensor decomposition of the stiffness tensor. The mean intercept length (MIL), generalized MIL (GMIL), and fourth-order global structure tensor were computed from images acquired through microcomputed tomography of 264 specimens of the femur. The predicted tensors were compared to the stiffness tensors computed by using the micro-finite element method (\(\upmu \)FE), which was considered as the gold standard, yielding strong correlations (\(R^2\) above 0.962). The GMIL tensor yielded the best results among the tested fabric tensors. The Frobenius error, geodesic error, and the error of the norm were reduced by applying the proposed model by 3.75, 0.07, and 3.16 %, respectively, compared to the model by Zysset and Curnier (Mech Mater 21(4):243–250, 1995) with the second-order MIL tensor. From the results, fourth-order fabric tensors are a good alternative to the more expensive \(\upmu \)FE stiffness predictions.  相似文献   

12.
In the context of osteoporosis, evaluation of bone fracture risk and improved design of epiphyseal bone implants rely on accurate knowledge of the mechanical properties of trabecular bone. A multi-axial loading chamber was designed, built and applied to explore the compressive multi-axial yield and strength properties of human trabecular bone from different anatomical locations. A thorough experimental protocol was elaborated for extraction of cylindrical bone samples, assessment of their morphology by micro-computed tomography and application of different mechanical tests: torsion, uni-axial traction, uni-axial compression and multi-axial compression. A total of 128 bone samples were processed through the protocol and subjected to one of the mechanical tests up to yield and failure. The elastic data were analyzed using a tensorial fabric–elasticity relationship, while the yield and strength data were analyzed with fabric-based, conewise generalized Hill criteria. For each loading mode and more importantly for the combined results, strong relationships were demonstrated between volume fraction, fabric and the elastic, yield and strength properties of human trabecular bone. Despite the reviewed limitations, the obtained results will help improve the simulation of the damage behavior of human bones and bone-implant systems using the finite element method.  相似文献   

13.
Boundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58 and 15.87 mm) were cropped from \(\mu \hbox {CT}\) scans of femoral heads and vertebral bodies. They were converted into \(\mu \hbox {FE}\) models and their stiffness tensor was established via six uniaxial and shear load cases. PMUBCs- and KUBCs-based tensors were determined for each sample. “In situ” stiffness tensors were also evaluated for the embedded configuration, i.e. when the loads were transmitted to the samples via a layer of trabecular bone. The Zysset–Curnier model accounting for bone volume fraction and fabric anisotropy was fitted to those stiffness tensors, and model parameters \(\nu _{0}\) (Poisson’s ratio) \(E_{0}\) and \(\mu _{0}\) (elastic and shear moduli) were compared between sizes. BCs and sample size had little impact on \(\nu _{0}\). However, KUBCs- and PMUBCs-based \(E_{0}\) and \(\mu _{0}\), respectively, decreased and increased with growing size, though convergence was not reached even for our largest samples. Both BCs produced upper and lower bounds for the in situ values that were almost constant across samples dimensions, thus appearing as an approximation of the effective properties. PMUBCs seem also appropriate for mimicking the trabecular core, but they still underestimate its elastic properties (especially in shear) even for nearly orthotropic samples.  相似文献   

14.
The ability to determine trabecular bone tissue elastic and failure properties has biological and clinical importance. To date, trabecular tissue yield strains remain unknown due to experimental difficulties, and elastic moduli studies have reported controversial results. We hypothesized that the elastic and tensile and compressive yield properties of trabecular tissue are similar to those of cortical tissue. Effective tissue modulus and yield strains were calibrated for cadaveric human femoral neck specimens taken from 11 donors, using a combination of apparent-level mechanical testing and specimen-specific, high-resolution, nonlinear finite element modeling. The trabecular tissue properties were then compared to measured elastic modulus and tensile yield strain of human femoral diaphyseal cortical bone specimens obtained from a similar cohort of 34 donors. Cortical tissue properties were obtained by statistically eliminating the effects of vascular porosity. Results indicated that mean elastic modulus was 10% lower (p<0.05) for the trabecular tissue (18.0+/-2.8 GPa) than for the cortical tissue (19.9+/-1.8 GPa), and the 0.2% offset tensile yield strain was 15% lower for the trabecular tissue (0.62+/-0.04% vs. 0.73+/-0.05%, p<0.001). The tensile-compressive yield strength asymmetry for the trabecular tissue, 0.62 on average, was similar to values reported in the literature for cortical bone. We conclude that while the elastic modulus and yield strains for trabecular tissue are just slightly lower than those of cortical tissue, because of the cumulative effect of these differences, tissue strength is about 25% greater for cortical bone.  相似文献   

15.
Damage accumulation under compressive fatigue loading is believed to contribute significantly to non-traumatic, age-related vertebral fractures in the human spine. Only few studies have explored trabecular bone fatigue behavior under compressive loading and none examined the influence of trabecular architecture on fatigue life. In this study, trabecular bone samples of human lumbar and thoracic vertebrae (4 donors from age 29 to 86, n=29) were scanned with a microCT system prior to compressive fatigue testing to determine morphology-mechanical relationships for this relevant loading mode. Inspired from previous fabric-based relationships for elastic properties and quasi-static strength of trabecular bone, a simple power relationship between volume fraction, fabric eigenvalue, applied stress and the number of cycles to failure is proposed. The experimental results demonstrate a high correlation for this relationship (R2=0.95) and detect a significant contribution of the degree of anisotropy towards prediction of fatigue life. Step-wise regression for total and residual strains at failure suggested a weak, but significant correlation with volume fraction. From the obtained results, we conclude that the applied stress normalized by volume fraction and axial fabric eigenvalue can estimate fatigue life of human vertebral trabecular bone in axial compressive loading.  相似文献   

16.
The mechanical characteristics of cancellous bone at the upper femoral region   总被引:10,自引:0,他引:10  
Mechanical behaviour of trabecular bone at the upper femoral region of human bones has been studied by compression tests on trabecular bone specimens removed from normal femora obtained at autopsy. Compression tests were performed along three different axes of loading on wet specimens and high loading rates. Femoral head specimens proved to be the strongest for any axis of loading.

Large variation in compressive strength and modulus of elasticity is seen within and between femoral bone samples. Anisotropy and differences in anisotropy for the different regions have been observed. A significant correlation between mechanical properties (σ max − E) and bone mineral content of the specimen was found.

Tests on whole bone structures demonstrate that removal of the central part of the trabecular bone at the proximal femur reduces the strength for impact loading considerably (± 50%).  相似文献   


17.
Trabecular bone is composed of organized mineralized collagen fibrils, which results in heterogeneous and anisotropic mechanical properties at the tissue level. Recently, biomechanical models computing stresses and strains in trabecular bone have indicated a significant effect of tissue heterogeneity on predicted stresses and strains. However, the effect of the tissue-level mechanical anisotropy on the trabecular bone biomechanical response is unknown. Here, a computational method was established to automatically impose physiologically relevant orientation inherent in trabecular bone tissue on a trabecular bone microscale finite element model. Spatially varying tissue-level anisotropic elastic properties were then applied according to the bone mineral density and the local tissue orientation. The model was used to test the hypothesis that anisotropy in both homogeneous and heterogeneous models alters the predicted distribution of stress invariants. Linear elastic finite element computations were performed on a 3 mm cube model isolated from a microcomputed tomography scan of human trabecular bone from the distal femur. Hydrostatic stress and von Mises equivalent stress were recorded at every element, and the distributions of these values were analyzed. Anisotropy reduced the range of hydrostatic stress in both tension and compression more strongly than the associated increase in von Mises equivalent stress. The effect of anisotropy was independent of the spatial redistribution high compressive stresses due to tissue elastic heterogeneity. Tissue anisotropy and heterogeneity are likely important mechanisms to protect bone from failure and should be included for stress analyses in trabecular bone.  相似文献   

18.
A 3D anisotropic micropolar continuum model of vertebral trabecular bone is presently developed accounting for the influence of microstructure-related scale effects on the macroscopic effective properties. Vertebral trabecular bone is modeled as a cellular material with an idealized periodic structure made of open 3D cells. The micromechanical approach relies on the discrete homogenization technique considering lattice microrotations as additional degrees of freedom at the microscale. The effective elastic properties of 3D lattices made of articulated beams taking into account axial, transverse shearing, flexural, and torsional deformations of the cell struts are derived as closed form expressions of the geometrical and mechanical microparameters. The scaling laws of the effective moduli versus density are determined in situations of low and high effective densities to assess the impact of the transverse shear deformation. The classical and micropolar effective moduli and the internal flexural and torsional lengths are identified versus the same microparameters. A finite element model of the local architecture of the trabeculae gives values of the effective moduli that are in satisfactory agreement with the homogenized moduli.  相似文献   

19.
In this study, we developed a numerical framework that computationally determines simultaneous and interactive structural changes of cortical and trabecular bone types during bone remodeling, and we investigated the structural correlation between the two bone types in human proximal femur. We implemented a surface remodeling technique that performs bone remodeling in the exterior layer of the cortical bone while keeping its interior area unchanged. A micro-finite element (μFE) model was constructed that represents the entire cortical bone and full trabecular architecture in human proximal femur. This study simulated and compared the bone adaptation processes of two different structures: (1) femoral bone that has normal cortical bone shape and (2) perturbed femoral bone that has an artificial bone lump in the inferomedial cortex. Using the proposed numerical method in conjunction with design space optimization, we successfully obtained numerical results that resemble actual human proximal femur. The results revealed that actual cortical bone, as well as the trabecular bone, in human proximal femur has structurally optimal shapes, and it was also shown that a bone abnormality that has little contribution to bone structural integrity tends to disappear. This study also quantitatively determined the structural contribution of each bone: when the trabecular adaptation was complete, the trabecular bone supported 54% of the total load in the human proximal femur while the cortical bone carried 46%.  相似文献   

20.
The purpose of this work is the receiving of quantitative data on Pu microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. Thoracic vertebra sample was taken for the study from former Mayak worker with rather high Pu burden, including information on occupational and exposure history, medical information and data on Pu content in organs. Lexan film autodiagrams were obtained using method of neutron-induced autoradiography from bone tissue sections. Quantitative analysis of randomly selected vision fields on one of autoradiograms was performed: fission fragment tracks Pu in different bone tissue areas were calculated, surface of bone tissue areas were defined. Quantitative information on Pu microdistribution in human bone tissue was obtained for the first time. On the basis of obtained data quantitative relation of Pu decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. Actual quantitative relation of decays in bone volume to decays on bone surface is significantly different from recommended by ICRP for cortical fraction. Biokinetic model parameters of extrapulmonary ICRP compartment might need to be adjusted after expansion of data set on quantitative Pu microdistribution in other bone types in human that will involve new cases with different exposure pattern of radionuclide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号