首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both dynamic G-banding and cell synchronization produced by bromodeoxyuridine (BrdU), were applied to equine chromosomes. BrdU incorporated during the first half of the S-phase is taken up into the R-bands that are early replicating. These bands, which have incorporated BrdU, cannot contract as usual and remain elongated; only the other regions of the chromosome, i.e., the G-bands, contract normally and are sharply defined. BrdU also can be used for cell synchronization. The addition of BrdU in a high concentration, 15 hours before harvest, and its removal 11 hours later, has two effects: initially the BrdU is incorporated during the first part of the S-phase and then it blocks the cells at mid-S-phase. Within the cell cycle, mid-S-phase appears to be the most vulnerable time to various blocking agents. To differentiate the regions of BrdU incorporation from those that have not been substituted, the fluorescence-photolysis-Giemsa (FPG) technique was applied as modified for horse chromosomes. This dynamic technique, which produces many prometaphase and prophase chromosomes showing very sharp G-bands, is certain to enhance the accuracy of cytogenetic analysis and aid in the standardization of equine chromosomes.  相似文献   

2.
Combining higher resolution chromosome analysis and bromodeoxyuridine (BrdU) incorporation, our study demonstrates that: (1) Human chromosomes synthesize DNA in a segmental but highly coordinated fashion. Each chromosome replicates according to its innate pattern of chromosome structure (banding). (2) R-positive bands are demonstrated as the initiation sites of DNA synthesis in all human chromosomes, including late-replicating chromosomes such as the LX and Y. (3) Replication is clearly biphasic in the sense that late-replicating elements, such as G-bands, the Yh, C-bands, and the entire LX, initiate replication after it has been completed in the autosomal R-bands (euchromatin) with minimal or no overlap. The chronological priority of R-band replication followed by G-bands is also retained in the facultative heterochromatin or late-replicating X chromosome (LX). Therefore, the inclusion of G-bands as a truly late-replicating chromatin type or G(Q)-heterochromatin is suggested. (4) Lateral asymmetry (LA) in the Y chromosome can be detected after less than half-cycle in 5-bromodeoxyuridine (BrdUrd), and the presence of at least two regions of LA in this chromosome is confirmed. (5) Finally, the replicational map of human chromosomes is presented, and a model of replication chronology is suggested. Based on this model, a system of nomenclature is proposed to place individual mitoses (or chromosomes) within S-phase, according to their pattern of replication banding. Potential applications of this methodology in clinical and theoretical cytogenetics are suggested.  相似文献   

3.
As chromosomes condense during early mitosis, their subbands fuse in a highly coordinated fashion. Subband fusion occurs when two large subbands flanking one minor subband come together to form one band, which takes on the cytological characteristics of the original flanking subbands. Using four different banding techniques--GTG (G-bands obtained with trypsin and Giemsa), GBG (G-bands obtained with BrdU and Giemsa), RHG (R-bands obtained by heating and Giemsa), and RBG (R-bands obtained with BrdU and Giemsa)--we studied subband fusion from prophase (1,250 bands per haploid set) to late metaphase (300 bands). To quantify the condensation process, a fusion index was established. We found that chromosomes contain preferential zones of condensation. From prophase to late metaphase, the early replicating subbands (R-subbands) fuse more readily with each other than do the late-replicating subbands (G-subbands). R-bands usually replicate early and condense late independently of the adjacent G-bands, which replicate late but condense early. Therefore, chromosome bands can undergo DNA replication and chromatin condensation relatively autonomously. Our data suggest that (1) chromosome replication and condensation are closely connected in time, (2) the metaphase bands represent independent units of chromatin condensation, and (3) the condensation process is an important feature of chromosome organization.  相似文献   

4.
Summary Antibodies against Z-DNA react with fixed metaphase chromosomes of man and other mammals. Indirect immunofluorescence staining shows that chromosomal segments corresponding to R- and T-bands preferentially fix Z-DNA antibodies. In this work Z-DNA antibodies were used as a probe for DNA conformation in euchromatin of fixed human chromosomes whose condensation or staining were modified by actinomycin D (AMD) and by 5-bromodeoxyuridine (BrdU). Treatments with AMD and BrdU were performed to induce a G-banding by modification of chromosomal segments corresponding to R- and T-bands. Long BrdU treatments were used to induce asymmetrical and partially undercondensed chromosomes by substitution of thymidine in one or both DNA strand. Our results show a clear difference of Z-DNA antibodies reactivity after AMD or BrdU treatment. The G-banding obtained after AMD treatment is not reversed by Z-DNA antibodies staining since these antibodies bind very weakly to the undercondensed R-bands. On the other hand, the G-banding obtained by BrdU is completely reversed giving typical R-banding, as on untreated chromosomes. For asymmetrical chromosomes an R-, T-banding pattern is always observed but there is a decrease of the fluorescence intensity proportional to the degree of BrdU incorporation. We conclude that AMD treatment greatly disturbs Z-DNA antibodies binding suggesting a change in DNA conformation, whereas BrdU treatments do not suppress but only weaken the specific binding of Z-DNA antibodies on R- and T-bands. The direct involvement of thymidine substitution in DNA sequences recognized by Z-DNA antibodies is discussed.  相似文献   

5.
M Ray 《Cytobios》1986,45(181):77-84
Sister chromatid exchanges (SCEs) were investigated in chromosomes from normal male Chinese hamster (CH) and its cell lines (CHW, 1102 and 1103). The fibroblasts were grown for two replication cycles in medium containing BrdU and mitomycin C (MMC) at concentrations of 0.01, 0.02 and 0.03 micrograms/ml of medium. The difference in SCEs/cell between male CH and CHW was negligible, but the difference between CHW and 1102 was about 2.6-fold. It is suggested from karyotypic differences between CHW and 1102, that the control of SCEs might be due partly or completely to chromosome 5 in Chinese hamster. The lines CHW and 1102 were less responsive than normal Chinese hamster cells when exposed to different MMC concentrations. It is suggested that the lines CHW and 1102 might be slightly resistant to MMC. The frequency of SCEs decreased with the decrease of chromosome size. SCEs are not preferentially distributed on any autosomal chromosomes. No SCEs were found in normal X-chromosomes. The majority of exchanges appear to be either interband regions or very near band-interband junctions.  相似文献   

6.
Replication kinetics of X chromosomes in fibroblasts and lymphocytes   总被引:1,自引:1,他引:0  
Summary The kinetics of replication for early and late replicating X chromosomes in karyotypically normal fibroblasts and lymphocytes was studied using terminal bromodeoxyuridine (BrdU) treatment followed by Hoechst/light/Giemsa staining. Although the order of band appearance differs between the two tissues, the programme (order and interval between band appearances) for early replicating bands (dark R-bands) is identical in the two homologues. This is probably also the case for later replicating bands (dark G-bands) though the criteria for derermining mean band appearance times are less reliable for these bands when terminal BrdU treatment is used. This means that the late X has a delayed start but thereafter proceeds at the same pace as its early counterpart.  相似文献   

7.
AA8 Chinese hamster ovary cells were treated with halogenated nucleosides analogues of thymidine, namely CldU, 5-iodo-2'-deoxyuridine (IdU), and 5-bromo-2'-deoxyuridine (BrdU), following different experimental protocols. The purpose was to see whether incorporation of exogenous pyrimidine analogues into DNA could interfere with normal chromosome segregation. The endpoint chosen was endoreduplication, that arises after aberrant mitosis when daughter chromatids segregation fails. Treatment with any of the halogenated nucleosides for two consecutive cell cycles resulted in endoreduplication, with a highest yield for CldU, intermediate for IdU, and lowest for BrdU. The frequency of endoreduplicated cells paralleled in all cases the level of analogue substitution into DNA. Our results seem to support that thymidine analogue substitution into DNA is responsible for the triggering of endoreduplication. Besides, the lack of any effect on endoreduplication when CldU was present for only one S-period strongly suggest that it is the nature of template, and not nascent DNA, that plays a major role in chromosome segregation. Taking into account that topoisomerase II cleaves DNA at preferred sequences within its recognition/binding sites, the likely involvement of the enzyme is discussed.  相似文献   

8.
Relation between the SCE points and the DNA replication bands   总被引:1,自引:0,他引:1  
A method for obtaining a combination of differential sister chromatid staining and DNA replication banding is described. Using this method the SCE points can be precisely localized to particular bands of individual chromosomes. It was shown, that SCEs occur not only in the regions of early DNA replication bands (=euchromatic segments=negative G-bands), but also in the regions of late DNA replication bands (=heterochromatic segments=positive G-bands). SCEs occurred about three times more frequently in the euchromatic segments than in the heterochromatic segments. Furthermore, more SCEs were observed in the early replicating X-chromosome than in the late replicating X-chromosome.  相似文献   

9.
Double labeling of interphase and metaphase chromosomes by 5-chlorodeoxyuridine (CldU) and 5-iododeoxyuridine (IdU) has been used in studies of the dynamics of DNA replication. Here, we have used this approach and confocal microscopy to analyze sites of DNA repair synthesis during nucleotide excision repair (NER) in quiescent human fibroblasts. Surprisingly, we have found that when both precursors are added at the same time to UV-irradiated cells they label different sites in the nucleus. In contrast, even very short periods of simultaneous IdU+CldU labeling of S-phase cells produced mostly overlapped IdU and CldU replication foci. The differential labeling of repair sites might be due to compartmentalization of I-dUTP and Cl-dUTP pools, or to differential utilization of these thymidine analogs by DNA polymerases delta and epsilon (Poldelta and Polepsilon). To explore the latter possibility we used purified mammalian polymerases to find that I-dUTP is efficiently utilized by both Poldelta and Polepsilon. However, we found that the UV-induced incorporation of IdU was more strongly stimulated by treatment of cells with hydroxyurea than was incorporation of CldU. This indicates that there may be distinct IdU and CldU-derived nucleotide pools differentially affected by inhibition of the ribonucleotide reductase pathway of dNTP synthesis and that is consistent with the view that differential incorporation of IdU and CldU during NER may be caused by compartmentalization of IdU- and CldU-derived nucleotide pools.  相似文献   

10.
A Romagnano  R Drouin  C L Richer 《Génome》1987,29(4):674-679
We present three idiograms of equine chromosomes, R-banded after BrdU incorporation and stained by the fluorochrome-photolysis-Giemsa technique. The haploid set of prometaphasic chromosomes shows 591 bands (range 7-38 per chromosome), the early metaphasic set 404 (range 5-26), and the midmetaphasic set 272 (range 3-18). Following cell synchronization with thymidine, more than twice as many R-bands were revealed on the resulting prometaphasic chromosomes, making possible the establishment of a very accurate and characteristic representation of this banding pattern in the domestic horse.  相似文献   

11.
The effect of two known mutagens on different human tissues was examined in an attempt to determine if tissue specific responses exist in SCE distribution on chromosome. The tissues included human lymphocytes, skin fibroblasts, ovarian and testicular cells. All cell types were exposed to varying concentrations of 5-bromodeoxyuridine (BrdU), and mitomycin C (MMC). The numbers of SCEs were recorded from each tissue. Results indicated that certain of the tissues tested appeared more sensitive to particular agents. Results also showed that in all the tissues tested the larger chromosomes in groups A to C had greater numbers of SCEs than did the smaller chromosomes in groups D to G. There were very few SCEs in F and G group chromosomes including Y.  相似文献   

12.
5-Bromodeoxyuridine (BrdU)-induced sister chromatid exchanges (SCEs) are mainly determined during replication on a BrdU-substituted template. The BrdU, once incorporated, is rapidly excised as uracil (U), and the gap is repaired with the incorporation of BrdU from the medium, which leads to further repair. During the second S period in BrdU medium, this process continues as the strand acts as template. Experiments suggest that 3-amino-benzamide (3AB) delays the ligation of the gaps formed after U excision, resulting in enhanced SCE levels during the second cycle of BrdU incorporation. When normal templates of G1 cells are treated before BrdU introduction with methyl methanesulphonate (MMS), 3AB in the first cycle doubles the MMS-induced SCEs but has no effect on them during the second cycle. When the BrdU-substituted template is treated with MMS in G1 of the second cycle, 3AB again doubles the SCEs due to MMS and also enhances the SCEs resulting from delays in ligation of the gaps following U excision in the BrdU-substituted template. The repair processes of MMS lesions that are sensitive to 3AB and lead to SCEs take place rapidly, while the repair process of late repairing lesions that lead to SCEs appear to be insensitive to 3AB. A model for SCE induction is proposed involving a single-strand break or gap as the initial requirement for SCE initiation at the replicating fork. Subsequent events represent natural stages in the repair process of a lesion, ensuring replication without loss of genetic information. G1 cells treated with methylnitrosourea (MNU) and grown immediately in BrdU medium rapidly lose the O6-methylguanine from their DNA and the rate of loss is BrdU-dose dependent. The rapid excision of the U lesions can explain the effect of BrdU concentration on SCE reduction following both MNU or MMS treatment.  相似文献   

13.
B Kaina  O Aurich 《Mutation research》1985,149(3):451-461
Chinese hamster V79 cells were pulse-treated (for 60 min) with various mutagens three, two or one cell cycles before fixation (treatment variants A, B and C, respectively) and the frequencies of induced SCEs were analysed and compared. The degree of increase in frequency of SCEs with dose in the treatment variants depended on the mutagen used. For the methylating agents MNU, MNNG and DMPNU, high yields of SCEs were obtained in the treatment variants A and B, and there was no difference in the efficiency with which these agents induced SCEs in these treatment variants. In the treatment variant C, however, no SCEs were induced with mutagen doses yielding a linear increase in SCE frequency in treatment variants A and B. A slight increase in SCE frequency in treatment variant C was observed only when relatively high doses of MNU or MNNG were applied. Like the above agents, EMS, ENU and MMS induced more SCEs in treatment variants A and B than in C, but for these agents treatment variant B was most effective and SCEs were induced over the entire dose range, also in treatment variant C. As opposed to the methylating and ethylating agents, MMC induced SCEs with high efficiency when treatment occurred one or two generations prior to fixation. There was no difference in SCE frequency between these treatment variants. MMC was completely ineffective for the induction of SCEs when treatment occurred three generations before fixation. The unexpectedly low SCE frequencies induced by the methylating and ethylating agents when treatment occurred one generation before fixation were not due to the exposure of cells to BrdU prior to mutagen treatment. From the results obtained, it is concluded that DNA methylation and ethylation lesions give rise to SCEs only with very low probability during the replication cycle after the lesion's induction, and that subsequent lesions produced during or after replication of the methylated or ethylated template (secondary lesions) are of prime importance for SCE formation after alkylation. For MMC, however, primary lesions seem to be most important for SCE induction.  相似文献   

14.
The use of a new method having combined C-band staining and differential staining of sister chromatids allowed to determine a pattern of distribution of spontaneous sister chromatid exchanges (SCE) along cytologically marked chromosomes 1, 2 and 6 of house mouse. All chromosomes displayed the same pattern of SCE distribution: SCEs are most frequent in the middle part of the chromosome arm and rather rare near the centromere and the telomere. It has been suggested that this pattern of distribution is positional, rather chromatin-specific. The chromosome 1 carrying paracentric inversion with breakpoints in the middle part of the arm and just near the telomere has the same pattern of SCE distribution as normal chromosome 1. Double insertion of homogeneously staining regions in the middle part of the chromosome 1 produces increase in the SCE number per chromosome proportional to the physical length of the insertion. In contrast to meiotic recombination, interference between SCEs is not detected. No evidence for existence of the hot-spots of SCE on the junctions between C-positive and C-negative regions, as well as between G-bands and R-bands, has been produced.  相似文献   

15.
From an X-irradiated human B-lymphoblastoid cell line (CCRF-SB), we have isolated a unique mutant clone (CCRF-SB-T1) which reveals high frequencies of sister-chromatid exchanges (SCEs) and chromosomal fragilities in the C-band regions of chromosomes Nos. 1, 9 and 16, when exposed to high concentrations of bromodeoxyuridine (BrdU). A clear BrdU dose-dependent increase of SCEs (9.6 SCEs/cell at 0.05 mM, 40 SCEs/cell at 0.37 mM on average) in this mutant was observed. Relative contributions of nucleoside and a thymidine (dT) analog of BrdU to high SCEs were studied, since an unusual SCE response to BrdU led us to suspect the significance of BrdU incorporation into DNA and dT pool disturbances. Addition of deoxycytidine (dC), dT or both dC and dT causes an increase of SCEs. On the other hand, deoxyadenosine (dA) and deoxyguanosine (dG) did not have significant effects on SCEs in SB-T1 cells. These results suggest that disturbances of pyrimidine-nucleotide synthesis, including gross imbalance of nucleotide pools, play a pivotal role in the high SCE induction of SB-T1 cells by BrdU.  相似文献   

16.
Cell synchronization was used to obtain an adequate percentage of very long chromosomes in equine mitotic spreads. Reported here is our variation, adapted to horse chromosomes, of a method using excess thymidine followed by bromodeoxyuridine incorporation. This technique routinely yields excellent quality cells, predominantly in prometaphase and prophase. Among other differences with the standard technique, this method does not use Colcemid, which, in addition to inhibiting spindle fiber formation, also increases chromosome contraction resulting in thicker and thus fewer bands. Consequently, horse prometaphase chromosomes, which have incorporated BrdU in the late-S-phase, are very long and display a large number of R-bands after the fluorescence-photolysis-Giemsa method. This technique should definitely be useful for the analysis of structural anomalies and the standardization of equine R-bands.  相似文献   

17.
Slides pretreated for C-banding and stained with DAPI or CMA3 show different banding patterns in human metaphase chromosomes compared to those obtained with either standard Giemsa C-banding or fluorochrome staining alone. Human chromosomes show C-plus DA-DAPI banding after C-banding plus DAPI and enhanced R-banding after C-banding plus Chromomycin A3 staining. If C-banding preferentially removes certain classes of DNA and proteins from different chromosome domains, C-banding pre-treatment may cause a differential DNA extraction from G- and R-bands in human chromosomes, resulting in a preferential extraction of DNA included in G-bands. This hypothesis is partially supported by the selective cleavage and removal of DNA from R-bands of restriction endonuclease HaeIII with C-banding combined with DAPI or Chromomycin A3 staining. Structural factors relating to regional differences in DNA and/or proteins could also explain these results.  相似文献   

18.
Summary A mean frequency of 20.6 sister chromatid exchanges (SCEs) per cell has been observed in a reconstructed karyotype of Hordeum vulgare by application of the FPG technique after unifilar incorporation of BrdU into chromosomes. The involvement in SCEs of the 48 segments into which the chromosome set had been subdivided was, with a single deviation, length proportional and independent of the segment's heterochromatin content. Asymmetric bands, indicative of an uneven distribution of adenine and thymidine between the DNA strands in adenine (A)-thymidine (T) rich chromosome regions, could not be detected after incubation of the cells in BrdU for one cycle of DNA replication.  相似文献   

19.
Differential staining of sister chromatids with Giemsa after BrdU incorporation into DNA was performed in Allium cepa L. chromosomes. A treatment solution containing 10–7 M FdU, 10–4 M BrdU and 10–6 M Urd was found to ensure BrdU incorporation without affecting cell cycle duration. After several procedures before staining the slides with Giemsa had been tested, treatment with the fluorochrome compound 33258 Hoechst, exposure to UV light and heating at 55° C in 0.5×SSC, were found to be essential for good differentiation. The distribution of SCEs per chromosome agrees with the expected Poisson distribution. The mean value of SCEs per chromosome occurring when cells were exposed to the treatment solution for two consecutive rounds of replication (=5.5) was double the mean value observed when cells were exposed to the same treatment for only one round of replication (=2.8). SCEs were found to occur more frequently in those chromosome regions corresponding neither to C-bands nor to late replicating DNA-rich regions. Finally, the occurrence of SCEs involving less than the width of a chromatid is discussed.  相似文献   

20.
《Mutation Research Letters》1987,190(4):271-276
The C-band patterns, DNA late replication patterns and distribution patterns of spontaneous and γ-ray-induced SCEs in Crepis capillaris chromosomes were studied. The fluorescence plus Giemsa (FPG) technique was used for detection of SCEs and late-replicating chromosome regions after unifilar incorporation of BrdU into DNA. An asynchronous replication of both euchromatic and heterochromatic chromosome regions was established. The frequency of SCEs is increased about 2-fold by 1.5 Gy γ-rays. The localization of the sites of SCEs was analyzed with special reference to eu- and heterochromatin and early- and late-replicating regions. The data obtained showed that SCEs were distributed nonrandomly along the chromosomes. Preferential occurrence of SCEs was observed in the following chromosome regions: at the junction between eu- and heterochromatic regions, the latter being rich in late-replicating DNA; at the junction between early- and late-replicating regions, the latter not being C-band positive. Certain heterochromatic regions were more rarely involved in SCEs than expected on the basis of their length. The lowest incidence of SCEs was found in the centromeric regions. Very similar distribution patterns of spontaneous and γ-ray-induced SCEs were observed. The possible role of the differences in the time of replication of the different chromosome regions in the formation of SCEs is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号