首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Addition of (15S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE) and the ionophore A23187 (2.5 microM) to human neutrophils led to the formation of both lipoxin A4 and lipoxin B4 as well as a novel 5,6,15-trihydroxyeicosatetraenoic acid. The new compound was identified using an improved isolation and detection system and its basic structure was determined by physical methods. On the basis of biosynthetic considerations, geometric isomers of lipoxin A4 and lipoxin B4 were prepared by total synthesis. Comparison of these synthetic materials with the neutrophil-derived product showed that the new compound is (5S,6R,15S)-trihydroxy-9,11,13-trans-7-cis-eicosatetraenoic acid or the 7-cis-11-trans-isomer of LXA4 (7-cis-11-trans-LXA4). LXA4, 11-trans-LXA4, 7-cis-LXA4 and 7-cis-11-trans-LXA4 all evoked dose-dependent (0.1-10 microM) contractions of the guinea pig lung strip, whereas 6-cis-LXB4 and 6-cis-8-trans-LXB4 relaxed this preparation. LXA4 and 7-cis-LXA4 were approx. 10-times more potent than the compounds with 11-trans geometry. However, all four double-bond isomers of LXA4 caused contractions which, based upon pharmacological evidence, appeared to involve specific activation of the same site as cysteinyl-containing leukotrienes. In conclusion, 7-cis-11-trans-LXA4 was isolated and identified as a novel biologically active eicosanoid formed by human neutrophils.  相似文献   

2.
Human leukocyte-derived lipoxin A (LXA; 5S,-6R,15S-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid) inhibits the cytotoxic activity of human natural killer (NK) cells. LXA and three of its isomers were prepared by total organic synthesis and assayed for activity with human NK cells. Dose-response studies showed that biologically derived LXA and synthetic LXA were equally effective in inhibiting NK cell cytotoxicity. 6S-LXA, with its 6S-OH group in an (S) configuration, proved to be approximately half as potent as LXA. In contrast, 6S-11-trans-LXA and 11-trans-LXA displayed virtually no inhibitory activities. The methyl esters of both LXA and 6S-LXA proved to be more potent than their corresponding free acids. Thus, LXA inhibition of NK cells displays clear-cut stereochemistry. In the absence of putative inhibitors, NK cells bind to their targets to form conjugates. This event is followed by polarization of the NK Golgi apparatus, which moves towards the plasma membrane that is in contact with the target cell. However, in the presence of either the methyl ester or free acid of LXA, the Golgi apparati of NK cells bound to their targets were randomly oriented. In contrast, neither 6S-11-trans-LXA nor the potent NK inhibitor prostaglandin E2 affected the polarization. Furthermore, although prostaglandin E2 resulted in a decrease in NK-target cell binding efficiency, LXA and its isomers failed to affect conjugate formation. Together these results indicate that LXA-induced inhibition of NK cytotoxicity does not act on NK cell binding but may block cytotoxicity by disrupting "signals" involved in the specific orientation of the Golgi. Thus, this latter event may appear to be important in cytotoxicity.  相似文献   

3.
Incubation of mixed human platelet/granulocyte suspensions with ionophore A23187 led to a platelet dependent formation of several lipoxin isomers from endogenous substrate. The major metabolite coeluted with authentic lipoxin A4 (5(S), 6(R), 15(S)-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid) in several HPLC-systems and showed an identical UV-spectrum. Furthermore, a similar profile of lipoxins was formed in pure platelet suspensions incubated with exogenous leukotriene A4 (5(S) -5, 6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid). The conversion of exogenous leukotriene A4 to lipoxin A4 was markedly increased in the presence of ionophore A23187.  相似文献   

4.
Lipoxin A4 (LXA4) and aspirin-triggered 15-epi-LXA4 are structurally and functionally distinct eicosanoids, with potent anti-inflammatory and immunomodulatory actions. Therapeutic use of LXA4 is greatly limited by its rapid metabolism in vivo and chemical instability. First-generation synthetic LXA4 analogs such as methyl (5R,6R,7E,9E,11Z,13E,15S)-16-(4-fluorophenoxy)-5,6,15-trihydroxy-7,9,11,13-hexadecatetraenoate (2, ATLa), were designed to minimize metabolism from the omega-end of the molecule. Pharmacokinetic analysis of ATLa revealed beta-oxidation as a novel route for LXA4 metabolism, prompting the development of second-generation 3-oxa-LXA4 analogs with improved pharmacokinetic disposition. Second-generation 3-oxa-LXA4 analogs such as (5R,6R,7E,9E,11Z,13E,15S)-16-(4-fluorophenoxy)-3-oxa-5,6,15-trihydroxy-7,9,11,13-hexadecatetraenoic acid (3), have shown potency and efficacy comparable to ATLa in diverse animal models after topical, intravenous or oral delivery. These include several acute (2-24 h) inflammatory reactions: calcium ionophore-induced skin edema and inflammation (topical), LTB4/PGE2-induced skin inflammation and vascular leak (topical), zymosan A-induced peritonitis (i.v. and oral) and ischemia-reperfusion-induced secondary organ injury (i.v.). Remarkably, 3-oxa-LXA4 analogs have potent once daily oral efficacy in preventing and promoting the resolution of established colitis induced by the hapten trinitrobenzene sulphonic acid (TNBS), an acute/chronic 7-14-day model of Crohn's disease. The second-generation 3-oxa-LXA4 analogs thus provide new stable pharmacophores with which to explore the emerging role of lipoxins as a new therapeutic principle for regulating inflammation, allergy and immune dysfunction in preclinical and clinical research.  相似文献   

5.
Transformation of leukotriene A4 to lipoxins by rat kidney mesangial cell   总被引:1,自引:0,他引:1  
Incubation of rat mesangial cells with leukotriene A4 in the presence of calcium ionophore A23187 led to a substrate dependent formation of lipoxin and its isomers. The major metabolite coeluted with authentic lipoxin A4 (LXA4) and lipoxin B4 (LXB4) in RP-HPLC system, and possessed a characteristic U.V. spectrum and C-value which were identical to authentic standards. GC/MS analysis on LXA4 further demonstrates that the mesangial cell derived LXA4 was identical to that reported by Serhan et al. (1) as LXA4 [5(S), 6,(R), 15(S)-trihydroxy7,9,13-trans-11-cis-eicosatetraenoic acid]. The formation of LXA4 was linear with substrate (LTA4) concentration. No similar products occurred in boiled controls. Incubation of mesangial cell with 15-HPETE failed to produce any lipoxin-like material. The absence of LX-like substance following incubation of 15-HPETE with mesangial cells suggested that 5-lipoxygenase activity is not expressed in mesangial cells under these conditions. The generation of LXA4 from LTA4 in mesangial cells suggested that there is an active 15- or 12- lipoxygenase activity in the kidney. The production of LX may play an important role in the regulation of renal function and the response to inflammatory stimuli.  相似文献   

6.
Bovine polymorphonuclear leukocytes exhibit a 12-lipoxygenase activity upon sonication. In contrast to bovine platelet 12-lipoxygenase and other 12-lipoxygenases, this enzyme is unable to convert 5(S)-HETE (5(S)-hydroxy,6-trans-8,11,14-cis-eicosatetraenoic acid) or 5(S)-HPETE (5(S)-hydroperoxy,6-trans-8,11,14-cis-eicosatetraenoic acid) into 5(S),12(S)-dihydroxy-6,10-trans,8,14-cis-eicosatetraenoic acid. Surprisingly, the formation of leukotriene A4-derived products namely leukotriene B4 and the leukotriene B4-isomers 12-epi,6-trans- leukotriene B4 and 6-trans-leukotriene B4, was observed upon incubation of this enzyme with 5(S)-HPETE. Hence, the 12-lipoxygenase from bovine polymorphonuclear leukocytes possesses leukotriene A4-synthase activity.  相似文献   

7.
Exposure of human polymorphonuclear neutrophils (PMN) to human monocyte derived neutrophil activating factor(s) (NAF) resulted in a concentration-dependent extracellular release of granule constituents. NAF also induced the generation of 5(S),12(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid [Leukotriene B4 (LTB4)] by PMNs which was enhanced in the presence of exogenous arachidonic acid (AA). In contrast to its enhancing effect on LTB4 production, AA inhibited NAF-stimulated PMN degranulation. 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE), a product of the 15-lipoxy-genation of AA in PMNS, caused a concentration-dependent suppression of degranulation and LTB4 generation by PMNs in contact with NAF. 15-HETE also inhibited the rise in cytosolic-free calcium [( Ca2+]i) observed in NAF activated PMNs. These data suggest that AA and a 15-lipoxygenase product modulate the NAF-associated activation pathway in human PMNs.  相似文献   

8.
We describe a method for the synthesis of methyl (5S,6R,7E,9E,11Z,13E,15S)-16-(4-fluorophenoxy)-5,6,15-trihydroxy-7,9,11,13-hexadecatetraenoate, a compound that has been described as a metabolically stable analogue of 15R-lipoxin A(4).  相似文献   

9.
LTB4 20-hydroxylase (P-450LTB) is the cytochrome P-450 in the microsomes of human polymorphonuclear leukocytes that catalyzes the omega-oxidation of leukotriene B4 (LTB4) to 20-OH LTB4. The activity of P-450LTB for LTB4 compared to isomers and analogs of LTB4 at a concentration of 0.3 microM revealed a preference of P-450LTB for both the triene bond configuration of LTB4 and for the chirality of the 5S and 12R hydroxyl groups. 15S-Hydroxyeicosatetraenoic acid, 8(R/S), 15S-dihydroxy-5-cis-9,11,13-trans-eicosatetraenoic acid, 8R,15S-dihydroxy-5,13-cis-9,11-trans-eicosatetraenoic acid, and 5S,15S-dihydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid were each not subject to omega-oxidation, indicating a negative effect of the presence of a 15-hydroxyl group on substrate recognition. At a concentration of 1.5 microM, 12R- and 12S-hydroxyeicosatetraenoic acid were converted to their respective 20-OH derivatives at rates that were 34.2 +/- 11.6% (mean +/- S.D., n = 3) and 3.5 +/- 4.3% (mean +/- S.D., n = 4), respectively, of that of LTB4 to 20-OH LTB4, further indicating that P-450LTB can distinguish the chirality of the 12-hydroxyl group. The lower Km of LTB4 (2.0 microM), as compared to those of its 6-trans-12-epi isomer (3.8 microM) and 5-epi-LTB4 (6.6 microM) confirmed the preference of P-450LTB for the specific triene bond structure of LTB4 and its preference for the chirality of the hydroxyl groups of LTB4 within this structurally related class of molecules. At equal 1.5-microM concentrations, LTB4 completely inhibited the omega-oxidation of all other substrates and partially suppressed that of leukotriene B5, consistent with the lower Km of LTB4 and indicating that P-450LTB catalyzed the omega-oxidation of all substrates. Thus, P-450LTB is a novel cytochrome P-450 of human polymorphonuclear leukocytes with substrate recognition determined by the triene bond configuration and the chirality of the hydroxyl groups.  相似文献   

10.
Formation of lipoxin A by granulocytes from eosinophilic donors   总被引:3,自引:0,他引:3  
The formation of arachidonic acid-derived lipoxygenase products was examined with human granulocytes obtained from eosinophilic donors. These eosinophil-enriched leukocyte populations, challenged in vitro with the ionophore of divalent cations A23187, transformed both exogenous and endogenous sources of arachidonic acid to several lipoxygenase-derived products, including 5(S), 6(R),15(S)-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid (lipoxin A). Lipoxin A was detected and characterized by high-pressure liquid chromatography (HPLC), ultraviolet absorbance, and gas-liquid chromatography-mass spectroscopy. Neither lipoxin B nor 6(S)-LXA was consistently detected in extracts from these incubations. The amounts of lipoxin A formed were proportional to the percentage of eosinophils present in the suspension. The results indicate that granulocytes from eosinophilic donors can generate lipoxin A.  相似文献   

11.
Lipoxins (LXs) are lipoxygenase-derived eicosanoids and putative endogenous braking signals for inflammation in the gastrointestinal tract and other organs. Aspirin triggers the production of 15-epimers during cell-cell interaction in a cytokine-primed milieu, and aspirin-triggered 15-epi-5(S),6(R),15(S)-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid (15-epi-LXA(4)) may contribute to the bioactivity profile of this prototype nonsteroidal anti-inflammatory drug in vivo. We determined the effect of LXA(4), 15-(R/S)-methyl-11,12-dehydro-LXA(4) methyl ester (15-(R/S)-methyl-LXA(4)), and stable analogs of LXA(4) on TNF-alpha-stimulated neutrophil-enterocyte interaction in vitro and TNF-alpha-stimulated chemokine release, changes in mucosal architecture, and enterocyte apoptosis in cytokine-activated intact human colonic mucosa ex vivo. LXA(4), 15-(R/S)-epi-LXA(4), and 16-phenoxy-11,12-dehydro-17,18,19,20-tetranor-LXA(4) methyl ester (16-phenoxy-LXA(4)) inhibited TNF-alpha-stimulated neutrophil adherence to epithelial monolayers at nanomolar concentrations. In parallel experiments involving human colonic mucosa ex vivo, LXA(4)potently attenuated TNF-alpha-stimulated release of the C-X-C chemokine IL-8, and the C-C chemokines monocyte-chemoattractant protein-1 (MCP-1) and RANTES. Exposure of strips of normal human colonic mucosa to TNF-alpha induced disruption of mucosa architecture and enhanced colonocyte apoptosis via a caspase-3-independent mechanism. Prior exposure of the mucosa strips to 15-(R/S)-methyl-LXA(4) attenuated TNF-alpha-stimulated colonocyte apoptosis and protected the mucosa against TNF-alpha-induced mucosal damage. In aggregate, our data demonstrate that lipoxins and aspirin-triggered 15-epi-LXA(4) are potent antagonists of TNF-alpha-mediated neutrophil-enterocyte interactions in vitro, attenuate TNF-alpha-triggered chemokine release and colonocyte apoptosis, and are protective against TNF-alpha-induced morphological disruption in human colonic strips ex vivo. Our observations further expand the anti-inflammatory profile of these lipoxygenase-derived eicosanoids and suggest new therapeutic approaches for the treatment of inflammatory bowel disease.  相似文献   

12.
Amino acid sequence of pilin isolated from pseudomonas aeruginosa PAK   总被引:29,自引:0,他引:29  
A polar metabolite of leukotriene C4 was formed by sequential conversions with soybean lipoxygenase I and liver peroxidase. The structure of this product was found to be 5(S), 15(S)-dihydroxy-6(R)-S-glutathionyl-7,9,13-trans-11-cis-eicosatetraenoic acid (15-hydroxy-delta 13-trans-leukotriene C3. The HPLC behaviour, the molar extinction coefficient and the biological activity of the metabolite are reported. Preliminary evidence suggests that this product is formed by mammalian tissues.  相似文献   

13.
Incubation of bovine polymorphonuclear leukocytes (PMNs) with arachidonic acid leads to the formation of four lipoxins. The same lipoxins are also formed upon incubation of bovine PMNs with 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 5(S)-hydroperoxy, 15(S)-hydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid or 5(S),15(S)-dihydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid. A 5,6-epoxide as intermediate in lipoxin formation in the bovine PMN is highly improbable because the 5-hydroxy compounds are as good substrates as the 5-hydroperoxy compounds. Moreover, the two main lipoxins were found to coelute with the two lipoxins produced via a triple dioxygenation of arachidonic acid by soybean lipoxygenase-1. Hence the bovine PMN is the first cell for which evidence is presented that the formation of lipoxins proceeds mainly via triple dioxygenation and not via 15-hydroxy-leukotriene A4 as is proposed for human and porcine PMNs.  相似文献   

14.
Lipoxin A (5,6,15L-trihydroxy-7,9,11,13-eicosatetraenoic acid) and lipoxin B (5D,14,15-trihydroxy-6,8,10,12-eicosatetraenoic acid), two newly isolated compounds derived from the oxygenation of arachidonic acid in human leukocytes, inhibit the cytotoxic activity of human natural killer (NK) cells. Dose-response studies showed that both lipoxin A and lipoxin B inhibit, at submicromolar concentrations (ID50 10(-7) M), NK cell activity assayed against K562 target cells. Prostaglandin E2 (PGE2) also inhibited cytotoxicity, whereas both 15-HETE (5(S)-hydroxy-5,8,11,13-eicosatetraenoic acid) and leukotriene B4 (synthetic and biologically derived) were ineffective. PGE2 stimulated a time- and dose-dependent increase in intracellular cAMP, which was accompanied by a decrease in NK target cell binding. Lipoxin A and lipoxin B did not elevate intracellular cAMP, nor did they inhibit target cell binding. Together these findings suggest that lipoxin A and lipoxin B abrogate NK cell cytotoxicity at a step distal to target effector cell recognition. In contrast, PGE2 appears to exert its effect, at least in part, on cytotoxicity indirectly by decreasing the binding between target and effector cells (in vitro). Moreover, they suggest that novel oxygenated derivatives of arachidonic acid (i.e., lipoxin A, lipoxin B) may regulate the activities of NK cells.  相似文献   

15.
Transcellular lipoxygenase metabolism between monocytes and platelets   总被引:4,自引:0,他引:4  
We have examined the effects of co-culture and in vitro co-stimulation on lipoxygenase metabolism in monocytes and platelets. Monocytes were obtained from the peripheral blood of normal volunteers by discontinuous gradient centrifugation and adherence to tissue culture plastic. Platelets were obtained from the platelet-rich plasma of the same donor. When 10(9) platelets and 2.5 x 10(6) monocytes were co-stimulated with 1 microM A23187, these preparations released greater quantities of 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid, 5(S),12-(S)dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid, and leukotriene C4, 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic (LTC4) when compared with monocytes alone. Release of arachidonic acid, 5-HETE, delta 6-trans-LTB4, and delta 6-trans-12-epi-LTB4 from monocytes was decreased in the presence of platelets. A dose-response curve was constructed and revealed that the above changes became evident when the platelet number exceeded 10(7). Dual radiolabeling experiments with 3H- and 14C-arachidonic acid revealed that monocytes provided arachidonic acid, 5-HETE, and LTA4 for further metabolism by the platelet. Monocytes did not metabolize platelet intermediates detectably. In addition, as much as 1.2 microM 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid and 12(S)-hydroperoxy-10-trans-5,8,14-cis-eicosatetraenoic acid had no effect on monocyte lipoxygenase metabolism. Platelets were capable of converting LTA4 to LTC4, but conversion of LTA4 to LTB4 was not detected. We conclude that the monocyte and platelet lipoxygenase pathways undergo a transcellular lipoxygenase interaction that differs from the interaction of the neutrophil and platelet lipoxygenase pathways. In this interaction monocytes provide intermediate substrates for further metabolic conversion by platelets in an unidirectional manner.  相似文献   

16.
Lipoxygenase (LO) products generated by human PMN were examined utilizing a gradient-HPLC and rapid spectral detector which permitted continuous UV-spectral monitoring of leukotrienes, lipoxins and related oxygenated products of arachidonic acid. When exposed to the ionophore A23187, PMN generated LTB4 and its omega-oxidation products as well as LXA4, LXB4, and 7-cis-11-trans-LXA4 from endogenous sources. Addition of 15-HETE changed the profile of products generated by activated PMN and led to a time- and dose-dependent increase in lipoxins and related compounds while the production of LTB4 and its omega-oxidation products was inhibited. Results of time-course and radiolabel studies revealed that 15-HETE is rapidly transformed within 15 s to 5,15-DHETE and conjugated tetraene-containing products, and that the inhibition of leukotriene formation followed a similar time-course. In contrast, PMN did not generate either lipoxins or related products from 5-[3H]HETE, nor did 5-HETE block leukotriene formation. Stimulated PMN generated 5,15-DHETE from exogenous 5-HETE, while in the absence of ionophore, 5-HETE was transformed to 5,20-HETE. These results indicate that PMN can generate lipoxins and related products from endogenous sources and that 15-HETE and 5-HETE are transformed by different routes.  相似文献   

17.
Cell damage unmasks 15-lipoxygenase activity in human neutrophils   总被引:1,自引:0,他引:1  
Metabolism of arachidonic acid (10 microM) into 15(S)-hydroxyl-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE) was proportional to lactate dehydrogenase release from human neutrophils incubated with supratherapeutic concentrations of non-steroidal anti-inflammatory agents. In contrast to others (Vanderhoek, J., and Bailey, J. (1984) J. Biol. Chem. 259, 6752-6756), we report that increased 15-HETE formation was not uniquely attributable to 5 mM ibuprofen, and it did not originate from enzymatic activation. For instance, ibuprofen (1-5 mM) did not affect the isolated 15-lipoxygenase enzyme in the 100,000 X g supernatant from neutrophil lysates, and dose-dependent increases in 15-HETE biosynthesis, proportional to lactate dehydrogenase release, were evident with benoxaprofen, naproxen, flurbiprofen, or etodolac. At similar supratherapeutic concentrations (1-5 mM), aspirin and phenylbutazone did not influence lactate dehydrogenase release or 15-HETE production. In further contrast, neutrophils did not tolerate 1-5 mM ibuprofen. Biochemical, morphological, flow cytometric, and fluorochromatic analyses each indicated cytological damage. A correlation between lactate dehydrogenase release and increased 15-HETE formation was a dose-dependent property also exhibited by arachidonic acid alone (10-100 microM). We conclude that cytological damage, facilitating access of arachidonic acid to 15-lipoxygenase in a cytosolic compartment, accounts for this phenomenon.  相似文献   

18.
Enzymic Synthesis of Leukotriene B4 in Guinea Pig Brain   总被引:1,自引:8,他引:1  
Leukotriene B4 [5(S), 12(R)-dihydroxy-6, 14-cis-8,10-trans-eicosatetraenoic acid] was obtained from endogenous arachidonic acid when slices of the guinea pig brain cortex were incubated with the calcium ionophore A 23187. Enzymes involved in its synthesis, arachidonate 5-lipoxygenase [arachidonic acid to 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid and subsequently to leukotriene A4] and leukotriene A4 hydrolase (leukotriene A4 to B4), were present in the cytosol fraction. Arachidonate 5-lipoxygenase was Ca2+-dependent, and was stimulated by ATP and the microsomal membrane, as was noted for the enzyme from mast cells. The lipid hydroperoxides stimulated 5-lipoxygenase by four- to sixfold. The leukotriene A4 hydrolase activity was rich in brain, and the specific activity (0.4 nmol/min/mg of protein) was much the same as that of guinea pig leukocytes. High activities of these enzymes were detected in the olfactory bulb, pituitary gland, hypothalamus, and cerebral cortex. Since leukotriene B4 is enzymically synthesized in the brain, possible roles related to neuronal functions or dysfunctions deserve to be examined.  相似文献   

19.
15-Hydroperoxy[1-14C]eicosapentaenoic acid derived from eicosapentaenoic acid (EPA) was incubated with suspensions of porcine leukocytes. Incubation with porcine leukocytes resulted in the formation of seven dihydroxy compounds, one monohydroxy and one hydroxyepoxy compound. After separation by reverse-phase and straight-phase HPLC, GC/MS analysis revealed that these metabolites were four isomers of 8,15-diHEPEs, two isomers of 14,15-diHEPEs, one isomer of 5,15-diHEPE, 15-HEPE and an epoxyalcohol: 13-hydroxy-14,15-epoxyeicosatetraenoic acid. In addition to the above metabolites, two trihydroxytetraene derivatives were also isolated. GC/MS and ultraviolet spectroscopy identified the two trihydroxypentaene derivatives as 5,6,15-trihydroxy-7,9,11,13,17-eicosapentaenoic acid (lipoxin A5) and 5,14,15-trihydroxy-6,8,10,12,17-eicosapentaenoic acid (lipoxin B5). This study demonstrated that the 15-hydroperoxide of EPA can be actively converted to various hydroxylated products via the 5-, 12- and 15-lipoxygenase as well as epoxyisomerase pathways in the porcine leukocytes.  相似文献   

20.
Porcine leukocytes incubated with an isoenzyme of phospholipase A2 (PLA2) (isolated from snake venom) produced several trihydroxytetraene- containing compounds which were derived from endogenous sources of arachidonic acid. The formation of these compounds was dose-dependent with an EC50 of approximately 1.25 X 10(-8) M. At this concentration of the isoenzyme and time of exposure the cells remained viable as determined by the exclusion of trypan blue. The compounds were purified by HPLC and their identities were determined by physical criteria which included U.V. spectrometry, GC/MS and by comparison with both synthetic and authentic materials. The biologically derived compounds proved to be lipoxin B (5S, 14R, 15S-trihydroxy-6, 10, 12-trans-8-cis-eicosatetraenoic acid) and its two structural isomers (8-trans-LXB and 14S-8-trans-LXB). Of interest, only small amounts of lipoxin A and its isomers were found in these incubations. Results of the present study indicate that porcine leukocytes can generate lipoxin B and its isomers from endogenous sources of arachidonic acid. Moreover, they suggest that certain PLA2 isoenzymes may initiate the formation of lipoxins and related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号