首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
三氯生因具有良好的广谱抗菌性能而被广泛应用于各类洗护日化用品中.随着这些日用品被人类不断消耗,三氯生也会通过多种途径进入环境并引发一系列环境问题.环境中残留的三氯生及其代谢产物具有持久性、生物累积性和生态毒性,进而给生态系统带来一定的潜在风险,甚至会对人类健康产生不良影响.基于此,本文总结和分析了三氯生在环境介质中的残留特征及其可能发生的降解代谢过程和产物,并系统地介绍了三氯生及其代谢产物的生物有效性及其对生物体繁殖、遗传和基因等方面的毒性效应,综合分析了三氯生对生态系统和人类健康可能存在的风险,并对有关三氯生后续的研究工作提出了建议和展望.  相似文献   

2.
多溴二苯醚(PBDEs)对环境的污染及其生态化学行为   总被引:3,自引:0,他引:3  
作为一种良好的防火溴代阻燃剂(brominnted flamt retardants, BFRS),多溴二苯醚(polybrominated diphenyl ethers, PBDEs)主要应用于各种家用和工业产品中,包括各种电子产品和家庭装饰产品.近年来,环境中PBDEs的浓度在不断上升.PBDEs具有很高的亲脂性和持久性,使得其在环境中易于富集和生物放大;同时,PBDEs又具有一定的挥发性,能够长途迁移至偏远地区;PBDEs具有一定的生物致毒作用和内分泌干扰作用.本文从生态化学行为和生态毒性两个方面综合论述了PBDEs在环境中的分布及存在水平、一般毒性效应和内分泌干扰行为,分析了当前研究中存在的问题,展望了PBDEs污染的研究方向.  相似文献   

3.
姜瑢  李勖之  王美娥  陈卫平 《生态学报》2023,43(21):9061-9070
随着社会经济的高度发展,人类活动加剧,我国土壤污染问题突出,不仅威胁人体健康,同时也严重威胁动植物及微生物的安全,生态安全问题不容忽视。但是我国土壤污染风险管控目前主要关注人体健康,对生态系统的关注较少,缺乏土壤污染生态风险评估技术指南及基于生态风险的土壤环境质量基准及标准。准确评价土壤污染生态毒性效应,是制定土壤环境质量标准、实现生态风险评估及预警与管控的重要基础。针对土壤污染生态毒性效应评价问题,分别对土壤污染生态毒性效应特征、评价方法、评价终点、暴露-效应关系构建、生态毒性效应外推,以及群落水平与复合污染生态毒性效应评价等方面的关键问题展开了讨论,指出目前土壤污染生态毒性效应评价主要是基于单物种的急性毒性测试,利用个体和亚个体水平的指示物作为评价终点,缺乏针对群落及生态系统高水平评价终点的生态毒性效应评价方法,定量评价污染物尤其是复合污染物对土壤生物群落及生态系统的影响,是土壤污染生态毒性效应评价的关键问题和难点问题。建议今后重点开展以下3方面的工作1)群落及生态系统水平评价终点的筛选;2)土壤污染生态毒性效应环境影响因子识别及影响机制研究;3)土壤复合污染联合毒性效应定量评价及...  相似文献   

4.
金属型纳米颗粒对植物的生态毒理效应研究进展   总被引:2,自引:0,他引:2  
纳米技术的高速发展和人工纳米颗粒(NPs)的广泛应用带来的潜在环境风险已经引起国内外的广泛关注.金属型纳米颗粒(MB NPs)具有金属毒性和纳米毒性的双重效应,其生物毒性和生态风险已成为纳米毒理学的研究热点之一.植物作为生态系统中的重要组分,是NPs生物累积并进入食物链的潜在途径.本文论述了MB NPs在植物中的吸收、转运和累积过程,总结了MB NPs对植物的毒性效应及其机制,探讨了MB NPs植物毒性的影响因素,综合评述了近年来关于MB NPs对植物特别是农作物的生态毒理效应的研究进展,同时分析了目前研究中存在的问题,对今后的研究方向进行了展望.  相似文献   

5.
徐磊  段林  陈威 《应用生态学报》2009,20(1):205-212
碳纳米材料具有广阔的应用前景,近年来已成为一大研究热点.工程碳纳米材料的大量生产和使用将不可避免地造成这些材料向环境中的释放,可能带来环境和生态风险.一方面,碳纳米材料本身具有环境毒性,另一方面碳纳米材料对环境中有毒有害污染物有较强的吸附性能,因此会影响污染物迁移转化等环境行为.目前,对碳纳米材料生态风险的研究主要集中于碳纳米材料对生物体可能的毒性,而对其自身环境行为以及影响污染物迁移归趋等方面的研究较少.本文简要概述了碳纳米材料的来源、暴露途径、环境行为以及对污染物迁移归趋的影响,阐述了这些研究对于评估碳纳米材料的环境和生态风险所具有的重要意义.  相似文献   

6.
多溴二苯醚动物毒理学研究进展及其生态毒理学展望   总被引:4,自引:0,他引:4  
多溴二苯醚(PBDEs)作为阻燃剂,已被广泛应用于工业产品和家庭用品中.近年来,在土壤、沉积物、大气和生物体中普遍检测出PBDEs.PBDEs对哺乳动物、鸟类和鱼类都存在不同程度的毒害作用,其分布的广泛性、难降解性和对人体健康的不确定性已引起人们的普遍关注.基于国外动物毒理学研究成果,综合论述了PBDEs在生物体内的累积和排泄及其对动物肝酶活性、甲状腺、生殖和发育、神经系统和免疫系统等的影响及其潜在的人体健康危害,并分析了目前PBDEs毒理学研究中的问题,展望了未来PBDEs生态毒理学的研究方向.  相似文献   

7.
环境中人为来源的铂族元素及其迁移转化研究进展   总被引:1,自引:0,他引:1  
李培苗  高学鲁 《应用生态学报》2012,23(12):3514-3525
铂族元素(PGEs)在汽车尾气催化转换器(VECs)、工业催化剂和制药学领域的广泛应用,致使PGEs尤其是铂(Pt)、钯(Pd)和铑(Rh)在某些区域已经成为新型环境污染物.由于环境样品中Pt/Pd、Pt/Rh与VECs中活性成分比例有较好的相关性,因此PGEs污染主要来源于应用了铂族金属的VECs.研究显示,过去的30年里,气溶胶、永生态系统(河水、雨水、地下水、海水、沉积物)、土壤、路尘和生物有机体等不同环境介质中PGEs浓度均显著增加.人们普遍认为铂族元素是惰性的,暴露于环境中的PGEs的健康风险很小,但PGEs毒性和生物可利用性的研究表明,在多种生物地球化学过程作用下,人为排放的PGEs易发生迁移,转化为毒性更大的形态,增加生物可利用性,通过食物链传递对人类产生潜在的健康风险.本文对不同环境介质中PGEs来源、分布及生物地球化学行为的最新成果进行了总结,认为PGEs人体健康风险标准制定、PGEs标准物质的研制、近海沉积物中PGEs的研究、PGEs对滩涂贝类的毒性、食物中PGEs的污染现状及人体健康风险评估等是今后PGEs研究的重要领域.  相似文献   

8.
药物和个人护理品(PPCPs)因持续排放到水环境且对水生态环境和人类健康造成潜在威胁而受到广泛关注.藻类作为水体重要的初级生产者,对水体的生态平衡和稳定起着重要的作用.本文围绕地表水PPCPs污染,介绍了不同国家和地区地表水体中PPCPs的浓度分布和污染特征,并从毒性效应、生物累积及潜在的生态风险等方面,综述了PPCPs对藻类的污染生态学研究进展,阐述PPCPs对藻类的毒性效应及机制,PPCPs在藻类中的生物累积,以及地表水体PPCPs的生态风险,为地表水体PPCPs的相关标准制定和修订,以及水体生态环境健康风险评价提供参考.  相似文献   

9.
太湖水体典型重金属镉和铬含量及其生态风险   总被引:8,自引:0,他引:8  
2010年9月使用电感耦合等离子体质谱仪(ICP-MS)对太湖水体中典型重金属镉和铬的暴露水平进行监测,在分析重金属暴露特征及其对太湖水生生物慢性毒性效应的基础上,采用安全阈值法进行生态风险评估.结果表明:镉和铬在太湖水体中均有检出,它们的平均暴露浓度分别为0.85和40.04μg·L-1;与铬相比,太湖水生生物对镉更敏感;铬的安全阈值>1,镉的安全阈值略<1,表明铬已对太湖水生生物造成一定的生态风险,而镉尚未对太湖造成明显生态风险.镉和铬的生态风险评估结果表明,毒性相对较低的铬,在高浓度环境暴露下会对生态环境造成较大风险,应给予足够重视.  相似文献   

10.
新型环境污染物抗生素的分子生态毒理研究进展   总被引:2,自引:0,他引:2  
人们在农业畜牧业和治疗人类疾病的过程中大量使用抗生素,由于抗生素自身独特的代谢特点,导致了抗生素在包括水体和土壤等环境介质中的残留,并因此导致对不同生物及生态系统产生广泛而深远的影响。本文概述了目前抗生素分子生态毒理学方面的研究进展,并阐述了抗生素对生物及生态系统的各分子水平的毒性机理及分子标记物研究情况,对于一些较新的分子诊断方法也进行了总结。最后,分析了抗生素分子生态毒理研究存在的不足,并探讨了今后的研究重点。  相似文献   

11.
Abstract

Organohalogen compounds constitute one of the important groups of persistent organic pollutants (POPs). Among them, due to their long-term health effects, one should pay attention on polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and perfluoroalkylated substances (PFASs). In case of that anthropogenic group of environmental pollution, the scientific world faces a problem of not only checking their toxic influences on the human organism at different age, from the natal period till late elderly years, but also monitoring the levels of such a numerous group of compounds in various environments, including human tissues and body fluids. This gave birth to a concept of checking the levels of selected biomarkers of exposure in the human organism, calculating body burden and assessing the hazard exposure to human beings. This article is an attempt to answer the question whether testing only biomarkers for different groups of pollutants is enough to determine the threat to different human populations. CB-153 levels represent a significant share in the sum of the six indicator NDL-PCBs (42.96%). In contrary to PCBs, in the case of PBDEs, not only BDE-47 is a biomarker of exposure to the entire PBDEs group, the congener BDE-153 cannot be omitted. Among the compounds belonging to PFASs, only four are detected in the biological material. The PFOS is the dominant representative of this group in the blood samples. It constitutes approximately 75% of the total PFASs.  相似文献   

12.
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate‐related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate‐influenced variables including sea‐surface temperature, southern oscillation indices (SOI, Z4), wind‐wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO‐related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate‐related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems.  相似文献   

13.
Effective environmental management practices reduce anthropogenic chemical impacts in ecosystems and lead to the onset of recovery. Recovery proceeds at different rates and to different extents at each level of biological organisation (molecular, cellular,individual, population, community, ecosystem).Consequently, environmental assessments made at one level of organisation may not indicate the progress of recovery processes at other levels. The course of recovery of populations and communities is usually monitored using routine ecological procedures. As pollutant exposure often results in residual effects which may influence the subsequent ability of ecosystems and their components to respond to new environmental challenges, it is proposed that a more relevant strategy would be to measure biomarkers to assess recovery at the individual level and below,determine pollution induced community tolerance and analyse community composition. It is also proposed that environmental managers aim tore-establish essential and desirable features of ecosystems (important structural components and functions (nutrient cycling, biodegradation rates,etc), restore biodiversity), rather than attempting to achieve full recovery, as the latter may waste valuable resources. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Ecological engineering: A field whose time has come   总被引:3,自引:0,他引:3  
Ecological engineering is defined as “the design of sustainable ecosystems that integrate human society with its natural environment for the benefit of both.” It involves the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance; and the development of new sustainable ecosystems that have both human and ecological value. While there was some early discussion of ecological engineering in the 1960s, its development was spawned later by several factors, including loss of confidence in the view that all pollution problems can be solved through technological means and the realization that with technological means, pollutants are just being moved from one form to another. Conventional approaches require massive amounts of resources to solve these problems, and that in turn perpetuates carbon and nitrogen cycle problems, for example. The development of ecological engineering was given strong impetus in the last decade with a textbook, the journal Ecological Engineering and two professional ecological engineering societies. Five principles about ecological engineering are: (1) It is based on the self-designing capacity of ecosystems; (2) It can be the acid test of ecological theories; (3) It relies on system approaches; (4) It conserves non-renewable energy sources; and (5) It supports biological conservation. Ecology as a science is not routinely integrated into engineering curricula, even in environmental engineering programs, while shortcoming, ecologists, environmental scientists, and managers miss important training in their profession—problem solving. These two problems could be solved in the integrated field of ecological engineering.  相似文献   

15.
The global scale and rapidity of environmental change is challenging ecologists to reimagine their theoretical principles and management practices. Increasingly, historical ecological conditions are inadequate targets for restoration ecology, geographically circumscribed nature reserves are incapable of protecting all biodiversity, and the precautionary principle applied to management interventions no longer ensures avoidance of ecological harm. In addition, human responses to global environmental changes, such as migration, building of protective infrastructures, and land use change, are having their own negative environmental impacts. We use examples from wildlands, urban, and degraded environments, as well as marine and freshwater ecosystems, to show that human adaptation responses to rapid ecological change can be explicitly designed to benefit biodiversity. This approach, which we call “renewal ecology,” is based on acceptance that environmental change will have transformative effects on coupled human and natural systems and recognizes the need to harmonize biodiversity with human infrastructure, for the benefit of both.  相似文献   

16.
The geomorphologic features called tiankengs were first discovered and named at the end of the twentieth century in karst areas of China. They have enjoyed increasing attention owing to their unusual geologic processes and unique ecological communities. However, the understanding of classification, geomorphic evolution, developmental conditions, geological dating and ecological environments of tiankengs are still extensively disputed by geomorphologists and geologists. This article focuses on combining all main areas of recent research activities from three aspects: development, evolution and transformation of karst tiankengs; biodiversity of karst tiankeng forests; and the impact of human activities on karst tiankeng ecosystems. Finally, we suggest future direction for research on karst tiankeng ecosystems: (1) multidisciplinary systematic study; (2) processes of ecological change and environmental effects under the influence of both natural and human impacts; (3) research on their protection, rational utilization, and sustainable management.  相似文献   

17.
Riparian ecosystems in the 21st century are likely to play a critical role in determining the vulnerability of natural and human systems to climate change, and in influencing the capacity of these systems to adapt. Some authors have suggested that riparian ecosystems are particularly vulnerable to climate change impacts due to their high levels of exposure and sensitivity to climatic stimuli, and their history of degradation. Others have highlighted the probable resilience of riparian ecosystems to climate change as a result of their evolution under high levels of climatic and environmental variability. We synthesize current knowledge of the vulnerability of riparian ecosystems to climate change by assessing the potential exposure, sensitivity, and adaptive capacity of their key components and processes, as well as ecosystem functions, goods and services, to projected global climatic changes. We review key pathways for ecological and human adaptation for the maintenance, restoration and enhancement of riparian ecosystem functions, goods and services and present emerging principles for planned adaptation. Our synthesis suggests that, in the absence of adaptation, riparian ecosystems are likely to be highly vulnerable to climate change impacts. However, given the critical role of riparian ecosystem functions in landscapes, as well as the strong links between riparian ecosystems and human well-being, considerable means, motives and opportunities for strategically planned adaptation to climate change also exist. The need for planned adaptation of and for riparian ecosystems is likely to be strengthened as the importance of many riparian ecosystem functions, goods and services will grow under a changing climate. Consequently, riparian ecosystems are likely to become adaptation ‘hotspots’ as the century unfolds.  相似文献   

18.
城市景观格局演变的生态环境效应研究进展   总被引:27,自引:0,他引:27  
陈利顶  孙然好  刘海莲 《生态学报》2013,33(4):1042-1050
快速城市化过程剧烈影响着下垫面变化,直接带来了交通拥挤、资源短缺、环境污染、生态恶化等诸多问题,所有这些问题的出现均与景观格局演变密切相关,研究城市景观格局演变及其生态环境效应正在成为全社会关注的热点.系统总结了城市化过程对景观格局演变的影响,分析了城市景观格局演变的热环境效应、水环境效应、生态服务效应,以及城市生态用地与生态安全格局设计等方面的研究进展.指出了目前城市景观演变与生态环境效应研究中存在的问题与不足:(1)现有研究侧重于景观格局演变的量化分析和景观格局指数的计算,较少关注景观格局演变对生态环境及其区域生态安全的影响;(2)城市景观格局演变与热岛效应研究多局限于两者数理统计关系的分析,对于城市热环境形成的机理缺乏深入研究;(3)城市景观格局演变与大气环境效应方面更多研究关注绿地及其空间布局在吸收和降解大气污染物、固体颗粒物方面的作用,对城市景观格局演变的大气环境综合效应以及大气灰霾效应影响机理重视不够;(4)如何通过合理设置生态用地,有效提高城市生态服务功能和保障城市生态安全,目前仍缺乏深入而又系统的研究.下一步的研究中,需要综合多尺度的景观信息来揭示城市景观的演变机理和环境效应,构建基于城市空间扩展和生态服务效应评价的城市生态空间优化决策模型,探讨城市生态空间优化模式与安全格局.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号