首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some morphological, physiological, and pharmacological properties of the retractor bulbi muscle of the frog were tested. The enzyme-histochemical investigation shows that the retractor bulbi muscle contains twitch muscle fibres only. Two types of twitch muscle fibres, which are especially different in their diameter and in the content of mitochondria, build the muscle in an irregular arrangement; tonic muscle fibres were not observed. On the average, the isolated retractor bulbi muscle has at room temperature a contraction time of 26 ms, a half-relaxation time of 28 ms, a fusion frequency of 75 stimuli/s, and a twitch-tetanus ratio of 0.28. The fatigability of this muscle is higher than in oculorotatory eye muscles but lower than in skeletal muscles of the frog. An increase of the extracellular K+-concentration elicits in retractor bulbi muscles a quickly transient contracture; the mechanical threshold of the muscle fibres is found in a range between 20 and 25 mM K+ in Ringer solution. Similar short-lasting contractures, which are probably caused by twitch fibres, rich in mitochondria, are also evoked by application of depolarizing drugs like acetylcholine. The properties of the retractor bulbi muscle are compared with those of the sartorius muscle of the frog, which likewise contains twitch muscle fibres only.  相似文献   

2.
The motor and proprioceptive innervation of the retractor bulbi muscle of the lamb has been studied. The motor innovation of the muscles supplied only by the abducens never. The proprioceptive nervous fibers coming from the muscle spindles of this extraocular muscle enter the brain stem through the ophthalmic branch of the trigeminal nerve and have their perikarya in the semilunar ganglion.  相似文献   

3.
Synopsis InChaetodon trifasciatus, the large eye has the form of a thick disk rather than that of a globe. A deep cutaneous groove surrounds the eyeball, probably allowing rapid eye movements. The form and innervation of the three pairs of extraocular muscles are described. Each muscle is made of two types of fascicles of fibres, thick and thin. There is neither an anterior nor posterior myodome. The skull attachment of the obliques and of the inferior rectus is made on the thin sagittal ethmoidal membranous septum while that of the other recti occurs on osseous pieces of the skull. The attachment on the eyeball is made on the cartilaginous sclera. The ratio of the lengths of the antagonist muscles, superior vs. inferior oblique, superior vs. inferior rectus and medial vs. lateral rectus, is about 1.43:1. The three oculomotor nerves (III: common oculomotor, IV: trochlear and VI: abducens) as well as the ciliary system are described. For the following reasons, an analogy between the lateral rectus ofChaetodon trifasciatus and the lateral rectus + retractor bulbi of other vertebrates is indicated: (1) the nucleus of nerve III (which innervates four muscles) has four sectors, while that of IV (which innervates only the superior oblique) is made of one sector; (2) nerve VI consists of two roots corresponding to two groups of nerve cells of its motor nucleus and (3) in other vertebrates, nerve VI innervates both the lateral rectus and the retractor bulbi.  相似文献   

4.
(1) Tentacle retraction in the land slug Ariolimax columbianus can be elicited by stimulation of all nerves and connectives of the ipsi- and contralateral cerebral ganglia. (2) Six neurons in the left cerebral ganglion were classified as tentacle retraction motoneurons because their action potentials are followed one-for-one with constant delay by action potentials in the left tentacle retractor nerve and their depolarization causes retraction of the ipsilateral tentacle. The motoneurons can be identified by size, pattern of pigmentation, position, and physiological characteristics. (3) Each retractor motoneuron discharges at a rather constant rate and has more than one source of excitatory input, but no IPSPs were observed. No synaptic connections between the six retractor motoneurons were found. The nerve action potentials that correspond to each motoneurons are distinguishable by waveform and size rank. (4) Each motoneuron elicits visible contractions in a particular region of the ipsilateral retractor muscle, but the motor fields of some motoneurons overlap. Some motoneurons mediate relatively rapid contractions while others cause slower responses. (5) There is one-for-one correspondence between action potentials of the largest unit recorded extracellularly in the retractor nerve and exciatory junction potentials recorded from the retractor muscle. No evidence of a peripheral neural plexus was found in serial sections of the retractor muscle.  相似文献   

5.
The ferret has become a popular model for physiological and neurodevelopmental research in the visual system. We believed it important, therefore, to study extraocular whole muscle as well as single motor unit physiology in the ferret. Using extracellular stimulation, 62 individual motor units in the ferret abducens nucleus were evaluated for their contractile characteristics. Of these motor units, 56 innervated the lateral rectus (LR) muscle alone, while 6 were split between the LR and retractor bulbi (RB) muscle slips. In addition to individual motor units, the whole LR muscle was evaluated for twitch, tetanic peak force, and fatigue. The abducens nucleus motor units showed a twitch contraction time of 15.4 ms, a mean twitch tension of 30.2 mg, and an average fusion frequency of 154 Hz. Single-unit fatigue index averaged 0.634. Whole muscle twitch contraction time was 16.7 ms with a mean twitch tension of 3.32 g. The average fatigue index of whole muscle was 0.408. The abducens nucleus was examined with horseradish peroxidase conjugated with the subunit B of cholera toxin histochemistry and found to contain an average of 183 motoneurons. Samples of LR were found to contain an average of 4,687 fibers, indicating an LR innervation ratio of 25.6:1. Compared with cat and squirrel monkeys, the ferret LR motor units contract more slowly yet more powerfully. The functional visual requirements of the ferret may explain these fundamental differences.  相似文献   

6.
Responses of neurons in area 7 of the parietal association cortex during and after formation of a defensive conditioned reflex to sound were recorded in waking cats. Changes in spike responses of the neurons as a result of the onset of conditioned reflex limb movements were observed in 68% of neurons. Spike responses of neurons formed as a result of learning appeared only if conditioned-reflex limb movements appeared, and they were not observed if, for some reason or other, movements were absent after presentation of the positive conditioned stimulus or on extinction of the reflex. Responses of 46% neurons to conditioned stimulation preceded the conditioned-reflex motor responses by 50–450 msec. The remaining responding neurons were recruited into the response after the beginning of movement. Characteristic spike responses of neurons to the conditioned stimulus appeared 500–900 msec before the beginning of movement and, in the case of appearance of special, "prolonged" motor responses of limb withdrawal, evoked by subsequent reinforcing stimulation.  相似文献   

7.
Neuromuscular activation is a primary determinant of metabolic demand and oxygen transport. The m. retractor and m. epitrochlearis are model systems for studying metabolic control and oxygen transport; however, the organization of muscle fibers and motor nerves in these muscles is unknown. We tested whether the topology of motor innervation was related to the morphology of muscle fibers in m. retractor and m. epitrochlearis of male hamsters ( approximately 100 g). Respective muscles averaged 47 and 12 mm in length 100 and 35 mg in mass. Staining for acetylcholinesterase revealed neuromuscular junctions arranged in clusters throughout m. retractor and as a central band across m. epitrochlearis, suggesting differences in fiber morphology. For both muscles, complete cross-sections contained approximately 1,700 fibers. Fiber cross-sectional areas were distributed nearly normal in m. epitrochlearis (mean = 1,559 +/- 17 microm(2)) and skewed left (P < 0.05) in m. retractor (mean = 973 +/- 15 microm(2)). Single fiber length (Lf) spanned muscle length (Lm) in m. epitrochlearis, while fibers tapered to terminate within m. retractor (Lf/Lm = 0.43 +/- 0. 02). With myelin staining, a single branch of ulnar nerve projected axons across the midregion of m. epitrochlearis. For m. retractor, the spinal accessory nerve branched to give rise to proximal and distal regions of innervation, with intermingling of axons between nerve branches. Nerve bundle cross-sections stained for acetylcholinesterase indicate that each motor axon projects to an average of 65 muscle fibers in m. epitrochlearis and 100 in m. retractor. Differences in fiber morphology, innervation topology, and neuromuscular organization may contribute to the heterogeneity of metabolic demand and oxygen supply in skeletal muscle.  相似文献   

8.
Many models of eyeblink conditioning assume that there is a simple linear relationship between the firing patterns of neurons in the interpositus nucleus and the time course of the conditioned response (CR). However, the complexities of muscle behaviour and plant dynamics call this assumption into question. We investigated the issue by implementing the most detailed model available of the rabbit nictitating membrane response (Bartha and Thompson in Biol Cybern 68:135-143, 1992a and in Biol Cybern 68:145-154, 1992b), in which each motor unit of the retractor bulbi muscle is represented by a Hill-type model, driven by a non-linear activation mechanism designed to reproduce the isometric force measurements of Lennerstrand (J Physiol 236:43-55, 1974). Globe retraction and NM extension are modelled as linked second order systems. We derived versions of the model that used a consistent set of SI units, were based on a physically realisable version of calcium kinetics, and used simulated muscle cross-bridges to produce force. All versions showed similar non-linear responses to two basic control strategies. (1) Rate-coding with no recruitment gave a sigmoidal relation between control signal and amplitude of CR, reflecting the measured relation between isometric muscle force and stimulation frequency. (2) Recruitment of similar strength motor units with no rate coding gave a sublinear relation between control signal and amplitude of CR, reflecting the increase in muscle stiffness produced by recruitment. However, the system response could be linearised by either a suitable combination of rate-coding and recruitment, or by simple recruitment of motor units in order of (exponentially) increasing strength. These plausible control strategies, either alone or in combination, would in effect present the cerebellum with the simplified virtual plant that is assumed in many models of eyeblink conditioning. Future work is therefore needed to determine the extent to which motor neuron firing is in fact linearly related to the nictitating membrane response.  相似文献   

9.
The responses of motor cortex neurons in the cat to the presentation of a single auditory click and a series of 10 clicks presented with 1,000/sec frequency were studied under conditions of chronic experiments before and after the development of an instrumental food reflex. After reflex development a single presentation of a positive conditioned stimulus (single click) markedly influenced for 7 sec the appearance of instrumental movements. At the same time, the immediate responses of motor cortex neurons to presentation of the conditioned auditory stimulus had no impact on the appearance in the motor cortex of discharges leading to the realization of instrumental movements. Consequently, motor cortex neurons do not require activation from afferent sensory inputs for the generation of such discharges. The immediate neuronal responses to conditioned stimulation did not inhibit the realization of the instrumental reflex. It is proposed that they are associated with the realization of motor function in the unconditioned defensive response evoked by the presentation of an auditory stimulus. The presence or absence of responses to auditory conditioned stimulation was dependent upon the signal meaning of the stimulus, its physical parameters, and the degree of excitability of the animal.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 539–550, July–August, 1985.  相似文献   

10.
The character of motor responses of the facial muscles evoked by stimulation of various regions of the frontal neocortex and of the nucleus of the facial nerve was studied in outbred mice. Motor responses of the vibrissae, of the upper lip and the jaw to monopolar microstimulation in the frontal cortical areas in 55 per cent of the cases had the latencies from 5 to 15 ms. The latencies of the responses to the facial nucleus stimulation ranged from 3 to 12 ms with maximal expressed interval of 4-6 ms. Excitation conduction velocities of the facial nerve estimated on the basis of latencies measurements, were from 1.5 to 12 m/s.  相似文献   

11.
Our objective in this study is to synthesize existing experimental data by constructing a realistic neuromechanical control model of rabbit nictitating membrane (NM) movements. We model the retractor bulbi muscle at the motor unit level because this is the level of nervous system control and also facilitates comparison with experimental data. Our motor unit model is derived from an earlier model of muscle activation based on calcium kinetics and includes a post-activation potentiation mechanism. Motor units are combined into a model of whole muscle that includes length-tension and force-velocity effects. Finally, we incorporate the muscle model into a biomechanical model in which the globe and NM are represented as a system of inertial, viscous, and elastic elements. The model takes patterns of neural signals (in the form of impulses) as input and produces movement of the NM as output. Our muscle model quantitatively accounts for data on isometric force development and decay for twitch, double shock, and tetanic stimulation. The complete model may be used for analysis of the relationship of motoneuron activity to behavior or as a realistic response generator in models of NM conditioning. This study also highlights gaps in the experimental data on the rabbit NM effector system.  相似文献   

12.
The objective of this study is to understand more precisely the relationship of motoneuron activity to movements of the rabbit nictitating membrane (NM). We use a model of the oculomotor plant to investigate what NM movements are generated by a given pattern of neural input and what inputs are required to generate particular NM movements. Simulated peak NM extensions can occur well over 50 ms after the end of motoneuron activity. The neural input required for the model to generate full amplitude NM extension responses is more consistent with single accessory abducens unit recordings from awake rabbits than recordings from anesthetized rabbits. An initial high frequency burst of neural activity followed by a rapid decay is required for simulations of conditioned responses (CRs) trained at a 125 ms interstimulus interval (ISI). For CRs trained with a 250 ms ISI, a more slowly rising and decaying neural activity is required. Model simulations show that the linear correlation between the shape of histogrammed motoneuron activity and the shape of NM movements can be high for long duration responses (> 400 ms) but is low for short duration responses (< 200 ms). Simulations are also consistent with the hypothesis that NM retraction is generally passive.  相似文献   

13.
Recent advances in the technology of recording magnetic fields associated with electric current flow in biological tissues have provided a means of examining action currents that is more direct and possibly more accurate than conventional electrical recording. Magnetic recordings are relatively insensitive to muscle movement, and, because the recording probes are not directly connected to the tissue, distortions of the data due to changes in the electrochemical interface between the probes and the tissue are eliminated. In vivo magnetic recordings of action currents of rat common peroneal nerve and extensor digitorum longus (EDL) muscle were obtained by a new magnetic probe and amplifier system that operates within the physiological temperature range. The magnetically recorded waveforms were compared with those obtained simultaneously by conventional, extracellular recording techniques. We used the amplitude of EDL twitch force (an index of stimulus strength) generated in response to graded stimulation of the common peroneal nerve to enable us to compare the amplitudes of magnetically recorded nerve and muscle compound action currents (NCACs and MCACs, respectively) with the amplitudes of electrically recorded nerve compound action potentials (NCAPs). High, positive correlations to stimulus strength were found for NCACs (r = 0.998), MCACs (r = 0.974), and NCAPs (r = 0.998). We also computed the correlations of EDL single motor unit twitch force with magnetically recorded single motor unit compound action currents (SMUCACs) and electrically recorded single motor unit compound action potentials (SMUCAPs) obtained with both a ring electrode and a straight wire serving as a point electrode. Only the SMUCACs had a relatively strong positive correlation (r = 0.768) with EDL twitch force. Correlations for ring and wire electrode-recorded SMUCAPs were 0.565 and -0.366, respectively. This study adds a relatively direct examination of action currents to the characterization of the normal biophysical properties of peripheral nerve, muscle, and muscle single motor units.  相似文献   

14.
We investigated the role of serotonin (5HT) and dopamine (DA) in the regulation of olfactory system function and odor-evoked tentacle movements in the snail Helix. Preparations of the posterior tentacle (including sensory pad, tentacular ganglion and olfactory nerve) or central ganglia with attached posterior tentacles were exposed to cineole odorant and the evoked responses were affected by prior application of 5HT or DA or their precursors 5-hydroxytryptophan (5HTP) and l-DOPA, respectively. 5HT applications decreased cineole-evoked responses recorded in the olfactory nerve and hyperpolarized the identified tentacle retractor muscle motoneuron MtC3, while DA applications led to the opposite changes. 5HTP and l-DOPA modified MtC3 activity comparable to 5HT and DA action. DA was also found to decrease the amplitude of spontaneous local field potential oscillations in the procerebrum, a central olfactory structure. In vivo studies demonstrated that injection of 5HTP in freely moving snails reduced the tentacle withdrawal response to aversive ethyl acetate odorant, whereas the injection of l-DOPA increased responses to “neutral” cineole and aversive ethyl acetate odorants. Our data suggest that 5HT and DA affect the peripheral (sensory epithelium and tentacular ganglion), the central (procerebrum), and the single motor neuron (withdrawal motoneuron MtC3) level of the snail’s nervous system.  相似文献   

15.
A comparative study of the quantitative data of the frog extraocular muscles and the cranial nerves that innervate them was performed. Oculorotatory muscles contain muscle fibres of at least 4 types which are arranged in heterogeneous layers. The zonal arrangement of the muscles does not occur on the cross-sections in the vicinity of muscle insertions. In these regions only two muscle fibre types are present and the total number of fibres is smaller by 70% than in the central region of the muscle. Most numerous are muscle fibres in the rectus inferior muscle, while the smallest number of fibres is found in rectus interior muscle. Three distinct types of nerve fibres are distinguished according to the following criteria: occurrence and thickness of myelin sheath, fibre diameter and ratio "g". The fibres with thin myelin sheaths indicate small diameters (1-5--6- mum) and their ratio "g" equals 0-82 +/- 0-08. They constitute about 30% of the myelinated fibres in the nerve supply of the oculorotatory muscles and about 14% in the supply of the retractor bulbi muscle. Both the value of the ratio "g" and a greater number of these fibres in the nerve supply of the muscles that contain slow contracting muscle fibres indicate that they are rather slow conducting nerve fibres. The range of the diameters of the fibres with thick myelin sheaths is greater (3-5--13-5 mum) and their "g" equals 0-66 +/- 0-06. These fibres constitute about 70% of the myelinated ones in the nerve supply of the oculorotatory muscles and 86% in the supply of the retractor bulbi muscles. The value of the ratio "g" in these fibres indicates that they are fast contracting ones. The smallest diameters are found in the myelinated fibres (0-5--1-7 mum). These fibres occur frequently in all the examined nerves; they constitute 36--47% of the total number of all the nerve fibres. The frog extraocular muscles are characterized by an abundal nerve supply which is reflected in the low innervation ratio (1:4--1:5). On the distal cross-section of nerves the number of nerve fibres is greater than on the proximal ones. Ganglionic neurons occur sporadically around the nerves; in the nerve III synaptic contacts between two neurons were observed.  相似文献   

16.
Unitary activity in the motor cortex (area 4) during a conditioned postural adjustment reflex was investigated in cats. Responses of the overwhelming majority of neurons connected with conditioned-reflex placing movements were activational in type. They consisted of several components and preceded the movements themselves by 50–600 msec. During realization of incorrect responses to presentation of a differential stimulus and of "spontaneous" interstimulus movements, the unitary responses were similar in direction but differed in their lower intensity and, in most cases, they appeared simultaneously with these movements. In the course of extinction both the conditioned-reflex movements and the corresponding unitary responses disappeared simultaneously. The technique of formation of a conditioned postural adjustment reflex suggested in this paper can be used to from natural, well-coordinated forelimb movements in animals in response to conditioned stimulation which are necessary initial components of more complex behavioral motor responses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 745–753, November–December, 1984.  相似文献   

17.
The morphology and innervation of the six oculomotor muscles in the gobiid fishTridentiger trigonocephalus are described. Every rectus muscle is composed of two types of muscle fibres. Muscles attach onto the cartilaginous or fibrous sclerotica. Oblique muscles attach onto the ethmoidal plate; recti muscles attach onto the parasphenoid or a thick fibrous membrane. There is no myodome. The common oculomotor nerve is composed of four bundles, the trochlear and the externus of two. The two kinds of fibres of the lateral rectus and the two distinct bundles of the nerve VI suggest a possible homology between this muscle in fishes and the lateral rectus+retractor bulbi in mammals.  相似文献   

18.
Sensory signals of contact and engagement with the substrate are important in the control and adaptation of posture and locomotion. We characterized responses of campaniform sensilla, receptors that encode forces as cuticular strains, in the tarsi (feet) of cockroaches using neurophysiological techniques and digital imaging. A campaniform sensillum on the fourth tarsal segment was readily identified by its large action potential in nerve recordings. The receptor discharged to contractions of the retractor unguis muscle, which engages the pretarsus (claws and arolium) with the substrate. We mimicked the effects of muscle contractions by applying displacements to the retractor apodeme (tendon). Sensillum firing did not occur to unopposed movements, but followed engagement of the claws with an object. Vector analysis of forces suggested that resisted muscle contractions produce counterforces that axially compress the tarsal segments. Close joint packing of tarsal segments was clearly observed following claw engagement. Physiological experiments showed that the sensillum responded vigorously to axial forces applied directly to the distal tarsus. Discharges of tarsal campaniform sensilla could effectively signal active substrate engagement when the pretarsal claws and arolium are used to grip the substrate in climbing, traversing irregular terrains or walking on inverted surfaces.  相似文献   

19.
A possible mechanism of participation of cholinergic striatal interneurons and dopaminergic cells in conditioned selection of a certain types of motor activity is proposed. This selection is triggered by simultaneous increase in the activity of dopaminergic cells and a pause in the activity of cholinergic interneurons in response to a conditioned stimulus. This pause is promoted by activation of striatal inhibitory interneurons and action of dopamine at D2 receptors on cholinergic cells. Opposite changes in dopamine and acetylcholine concentration synergistically modulate the efficacy of corticostriatal inputs, modulation rules for the "strong" and "weak" corticostriatal inputs are opposite. Subsequent reorganization of neuronal firing in the loop cortex--basal ganglia--thalamus--cortex results in amplification of activity of the group of cortical neurons that strongly activate striatal cells, and simultaneous suppression of activity of another group of cortical neurons that weakly activate striatal cells. These changes can underlie a conditioned selection of motor activity performed with involvement of the motor cortex. As follows from the proposed model, if the time delay between conditioned and unconditioned stimuli does not exceed the latency of responses of dopaminergic and cholinergic cells (about 100 ms), conditioned selection of motor activity and learning is problematic.  相似文献   

20.
In experiments on rabbits electrical stimulation of the medial hypothalamic area elicited a biphasic reaction: running during the current action and species-specific reaction of kicking the floor with the hind limbs in poststimulous period. Conditioning with acoustic stimulus led in the half of rabbits to elaboration of a habit of jumping on a safe platform in experimental model of active avoidance and to a weak conditioned reaction of kicking without running in the model of classical defensive reflex. The number of conditioned limb kicks was 7-10 times less than that of analogous responses to the reinforcing stimulus. With the increase of the number of combinations, the conditioned habit of kicking became deteriorated: the response became weaker and its latency more prolonged. The results of experiments are discussed in the light of Anokhin's theory of functional system of goal-directed behavioural act.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号