首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 14α-sterol demethylase (CYP51), the key enzyme in sterol biosynthesis pathway, is an important target protein of cholesterol-lowering agents, antifungal drugs, and herbicides. CYP51B enzyme is one of the CYP51 family members. In the present study, we have chosen four representative inhibitors of CYP51B: diniconazole (Din), fluconazole (Flu), tebuconazole (Teb), and voriconazole (Vor), and launched to investigate the binding features of CYP51B-inhibitor and gating characteristics via molecular docking and molecular dynamics (MD) simulations. The results show that the ranking of binding affinities among these inhibitors is Din > Teb > Vor > Flu. Din shows the strongest binding affinity, whereas Flu shows the weakest binding affinity. More importantly, based on the calculated binding free energy results, we hypothesize that the nonpolar interactions are the most important contributors, and three key residues (Thr77, Ala258, and Lys454) play crucial role in protein-inhibitor binding. Besides, residue Phe180 may play a molecular switch role in the process of the CYP51B-Teb and CYP51B-Vor binding. Additionally, Tunnel analysis results show that the major tunnel of Din, Flu, and Teb is located between helix K, FG loop, and β4 hairpin (Tunnel II).The top ranked possible tunnel (Tunnel II) corresponds to Vor exits through helix K, F and helix J. This study further revealed the CYP51B relevant structural characteristics at the atomic level as well as provided a basis for rational design of new and more efficacious antifungal agents.  相似文献   

2.
The majority of cytochromes P450 play a critical role in metabolism of endogenous and exogenous substrates, some of its products are carcinogens. Therefore, inhibition of P450 enzymes activity can promote the detoxification and elimination of chemical carcinogens. In this study, molecular dynamics (MD) simulations and adaptive steered molecular dynamics (ASMD) simulations were performed to explore the structure features and channel dynamics of three P450 isoforms 2A6, 2A13, and 2E1 bound with the common inhibitor pilocarpine. The binding free energy results combined with the PMF calculations give a reasonable ranking of binding affinity, which are consistent with the experimental data. Our results uncover how a sequence divergence of different CYP2 enzymes causes individual variations in major channel selections. On the basis of channel bottleneck and energy decomposition analysis, we propose a gating mechanism of their respective major channels in three enzymes, which may be attributed to a reversal of Phe209 in CYP2A6/2A13, as well as the rotation of Phe116 and Phe298 in CYP2E1. The hydrophobic residues not only make strong hydrophobic interactions with inhibitor, but also act as gatekeeper to regulate the opening of channel. The present study provides important insights into the structure–function relationships of three cytochrome P450s and the molecular basis for development of potent inhibitors.  相似文献   

3.
By using the polymerase chain reaction technique combined with restriction enzyme fragment length polymorphism (PCR-RFLP), a novel polymorphism of CYP2A6, CYP2A6*6, was detected in 0.4% of the Japanese population. To study the enzymatic properties of the CYP2A6.6 protein with a single amino acid substitution of arginine 128 to glutamine, both this isozyme and the CYP2A6.1 protein (wild-type) were produced in insect cells using a baculovirus system. Coumarin 7-hydroxylation, which reflects CYP2A6 activity, was significantly reduced (one-eighth of normal) in cell lysate from CYP2A6*6-transfected Sf9 cells compared with that lysate from CYP2A6*1-transfected cells. To clarify the mechanism of inactivation of the CYP2A6.6 enzyme, the heme content and reduced CO difference spectrum were examined. Although CYP2A6.6 retained about one-half the heme content of CYP2A6.1, the reduced CO-bound Soret peak was completely lost. These results suggest that the inactivation of CYP2A6.6 is mainly due to disordering of the holoprotein structure rather than a failure of heme incorporation.  相似文献   

4.
Cytochrome P450 (CYP) 3A7 plays a crucial role in the biotransformation of the metabolized endogenous and exogenous steroids. To compare the metabolic capabilities of CYP3A7–ligands complexes, three endogenous ligands were selected, namely dehydroepiandrosterone (DHEA), estrone, and estradiol. In this study, a three-dimensional model of CYP3A7 was constructed by homology modeling using the crystal structure of CYP3A4 as the template and refined by molecular dynamics simulation (MD). The docking method was adopted, combined with MD simulation and the molecular mechanics generalized born surface area method, to probe the ligand selectivity of CYP3A7. These results demonstrate that DHEA has the highest binding affinity, and the results of the binding free energy were in accordance with the experimental conclusion that estrone is better than estradiol. Moreover, several key residues responsible for substrate specificity were identified on the enzyme. Arg372 may be the most important residue due to the low interaction energies and the existence of hydrogen bond with DHEA throughout simulation. In addition, a cluster of Phe residues provides a hydrophobic environment to stabilize ligands. This study provides insights into the structural features of CYP3A7, which could contribute to further understanding of related protein structures and dynamics.  相似文献   

5.
Harris DL  Park JY  Gruenke L  Waskell L 《Proteins》2004,55(4):895-914
The molecular origins of temperature-dependent ligand-binding affinities and ligand-induced heme spin state conversion have been investigated using free energy analysis and DFT calculations for substrates and inhibitors of cytochrome P450 2B4 (CYP2B4), employing models of CYP2B4 based on CYP2C5(3LVdH)/CYP2C9 crystal structures, and the results compared with experiment. DFT calculations indicate that large heme-ligand interactions (ca. -15 kcal/mol) are required for inducing a high to low spin heme transition, which is correlated with large molecular electrostatic potentials (approximately -45 kcal/mol) at the ligand heteroatom. While type II ligands often contain oxygen and nitrogen heteroatoms that ligate heme iron, DFT results indicate that BP and MF heme complexes, with weak substrate-heme interactions (ca. -2 kcal/mol), and modest MEPS minima (>-35 kcal/mol) are high spin. In contrast, heme complexes of the CYP2B4 inhibitor, 4PI, the product of benzphetamine metabolism, DMBP, and water are low spin, have substantial heme-ligand interaction energies (<-15 kcal/mol) and deep MEPS minima (<-45 kcal/mol) near their heteroatoms. MMPBSA analysis of MD trajectories were made to estimate binding free energies of these ligands at the heme binding site of CYP2B4. In order to initially assess the realism of this approach, the binding free energy of 4PI inhibitor was computed and found to be a reasonable agreement with experiment: -7.7 kcal/mol [-7.2 kcal/mol (experiment)]. BP was determined to be a good substrate [-6.3 kcal/mol (with heme-ligand water), -7.3 kcal/mol (without ligand water)/-5.8 kcal/mol (experiment)], whereas the binding of MF was negligible, with only marginal binding binding free energy of -1.7 kcal/mol with 2-MF bound [-3.8 kcal/mol (experiment)], both with and without retained heme-ligand water. Analysis of the free energy components reveal that hydrophobic/nonpolar contributions account for approximately 90% of the total binding free energy of these substrates and are the source of their differential and temperature-dependent CYP2B4 binding. The results indicate the underlying origins of the experimentally observed differential binding affinities of BP and MF, and indicate the plausibility of the use of models derived from moderate sequence identity templates in conjunction with approximate free energy methods in the estimation of ligand-P450 binding affinities.  相似文献   

6.
Molecular modelling of human CYP1B1 based on homology with the mammalian P450, CYP2C5, of known three-dimensional structure is reported. The enzyme model has been used to investigate the likely mode of binding for selected CYP1B1 substrates, particularly with regard to the possible effects of allelic variants of CYP1B1 on metabolism. In general, it appears that the CYP1B1 model is consistent with known substrate selectivity for the enzyme, and the sites of metabolism can be rationalized in terms of specific contacts with key amino acid residues within the CYP1B1 heme locus. Furthermore, a mode of binding interaction for the inhibitor, alpha-naphthoflavone, is presented which accords with currently available information. The current paper shows that a combination of molecular modelling and experimental determinations on the substrate metabolism for CYP1B1 allelic variants can aid in the understanding of structure-function relationships within P450 enzymes.  相似文献   

7.
Zhou X  Wang Y  Or PM  Wan DC  Kwan YW  Yeung JH 《Phytomedicine》2012,19(7):648-657
The effects of Danshen and its active components (tanshinone I, tanshinone IIA, dihydrotanshinone and cryptotanshinone) on CYP2D6 activity was investigated by measuring the metabolism of a model CYP2D6 probe substrate, dextromethorphan to dextrorphan in human pooled liver microsomes. The ethanolic extract of crude Danshen (6.25-100 μg/ml) decreased dextromethorphan O-demethylation in vitro (IC(50)=23.3 μg/ml) and the water extract of crude Danshen (0.0625-1 mg/ml) showed no inhibition. A commercially available Danshen pill (31.25-500 μg/ml) also decreased CYP2D6 activity (IC(50)=265.8 μg/ml). Among the tanshinones, only dihydrotanshinone significantly inhibited CYP2D6 activity (IC(50)=35.4 μM), compared to quinidine, a specific CYP2D6 inhibitor (IC(50)=0.9 μM). Crytotanshinone, tanshinone I and tanshinone IIA produced weak inhibition, with IC(20) of 40.8 μM, 16.5 μM and 61.4 μM, respectively. Water soluble components such as salvianolic acid B and danshensu did not affect CYP2D6-mediated metabolism. Enzyme kinetics studies showed that inhibition of CYP2D6 activity by the ethanolic extract of crude Danshen and dihydrotanshinone was concentration-dependent, with K(i) values of 4.23 μg/ml and 2.53 μM, respectively, compared to quinidine, K(i)=0.41 μM. Molecular docking study confirmed that dihydrotanshinone and tanshinone I interacted with the Phe120 amino acid residue in the active cavity of CYP2D6 through Pi-Pi interaction, but did not interact with Glu216 and Asp301, the key residues for substrate binding. The logarithm of free binding energy of dihydrotanshinone (-7.6 kcal/mol) to Phe120 was comparable to quinidine (-7.0 kcal/mol) but greater than tanshinone I (-5.4 kcal/mol), indicating dihydrotanshinone has similar affinity to quinidine in binding to the catalytic site on CYP2D6.  相似文献   

8.
Comparing bufuralol 1'-hydroxylase activity among liver microsomes prepared from individuals whose CYP2D6 genotypes had been determined, we found that the activity tended to decrease depending on the number of the CYP2D6*10 allele. Pre-incubation of liver microsomes from individuals homozygous for the CYP2D6*10 allele resulted in a decrease in the enzyme activity more rapidly than those from individuals homozygous for the CYP2D6*1, suggesting that not only the catalytic activity but also the thermal stability of the enzyme appeared to be affected by the genetic polymorphism. To confirm this hypothesis, the kinetic parameters of CYP2D6.1 and CYP2D6.10 were compared for bufuralol 1'-hydroxylation and dextromethorphan O-demethylation using microsomes prepared from yeast transformed with plasmids carrying CYP2D6 cDNAs (*1A and *10B). Kinetic studies of these CYP2D6 forms indicated clear differences in the metabolic activities between the wild (CYP2D6.1) and the mutant enzymes (CYP2D6.10). Bufuralol 1(')-hydroxylase activity in microsomes of yeast expressing CYP2D6.10 was rapidly decreased by heat treatment, supporting the idea that the thermal stability of the enzyme was reduced by amino acid replacement from Pro (CYP2D6.1) to Ser (CYP2D6.10). These data strongly suggest that the thermal instability together with the reduced intrinsic clearance of CYP2D6.10 is one of the causes responsible for the known fact that Orientals show lower metabolic activities than Caucasians for drugs metabolized mainly by CYP2D6, because of a high frequency of CYP2D6*10 in Orientals.  相似文献   

9.
The Cytochrome P450 2B6 (CYP2B6) enzyme makes a small contribution to hepatic nicotine metabolism relative to CYP2A6, but CYP2B6 is the primary enzyme responsible for metabolism of the smoking cessation drug bupropion. Using CYP2A6 genotype as a covariate, we find that a non-coding polymorphism in CYP2B6 previously associated with smoking cessation (rs8109525) is also significantly associated with nicotine metabolism. The association is independent of the well-studied non-synonymous variants rs3211371, rs3745274, and rs2279343 (CYP2B6*5 and *6). Expression studies demonstrate that rs8109525 is also associated with differences in CYP2B6 mRNA expression in liver biopsy samples. Splicing assays demonstrate that specific splice forms of CYP2B6 are associated with haplotypes defined by variants including rs3745274 and rs8109525. These results indicate differences in mRNA expression and splicing as potential molecular mechanisms by which non-coding variation in CYP2B6 may affect enzymatic activity leading to differences in metabolism and smoking cessation.  相似文献   

10.
The NS5B RdRp polymerase is a prominent enzyme for the replication of Hepatitis C virus (HCV). During the HCV replication, the template RNA binding takes place in the “fingers” sub-domain of NS5B. The “fingers” domain is a new emerging allosteric site for the HCV drug development. The inhibitors of the “fingers” sub-domain adopt a new antiviral mechanism called RNA intervention. The details of essential amino acid residues, binding mode of the ligand, and the active site intermolecular interactions of RNA intervention reflect that this mechanism is ambiguous in the experimental study. To elucidate these details, we performed molecular docking analysis of the fingers domain inhibitor quercetagetin (QGN) with NS5B polymerase. The detailed analysis of QGN-NS5B intermolecular interactions was carried out and found that QGN interacts with the binding pocket amino acid residues Ala97, Ala140, Ile160, Phe162, Gly283, Gly557, and Asp559; and also forms π?π stacking interaction with Phe162 and hydrogen bonding interaction with Gly283. These are found to be the essential interactions for the RNA intervention mechanism. Among the strong hydrogen bonding interactions, the QGN?Ala140 is a newly identified important hydrogen bonding interaction by the present work and this interaction was not resolved by the previously reported crystal structure. Since D559G mutation at the fingers domain was reported for reducing the inhibition percentage of QGN to sevenfold, we carried out molecular dynamics (MD) simulation for wild and D559G mutated complexes to study the stability of protein conformation and intermolecular interactions. At the end of 50?ns MD simulation, the π?π stacking interaction of Phe162 with QGN found in the wild-type complex is altered into T-shaped π stacking interaction, which reduces the inhibition strength. The origin of the D559G resistance mutation was studied using combined MD simulation, binding free energy calculations and principal component analysis. The results were compared with the wild-type complex. The mutation D559G reduces the binding affinity of the QGN molecule to the fingers domain. The free energy decomposition analysis of each residue of wild-type and mutated complexes revealed that the loss of non-polar energy contribution is the origin of the resistance.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
CYP101D2 is a cytochrome P450 monooxygenase from Novosphingobium aromaticivorans which is closely related to CYP101A1 (P450cam) from Pseudomonas putida. Both enzymes selectively hydroxylate camphor to 5-exo-hydroxycamphor, and the residues that line the active sites of both enzymes are similar including the pre-eminent Tyr96 residue. However, Met98 and Leu253 in CYP101D2 replace Phe98 and Val247 in CYP101A1, and camphor binding only results in a maximal change in the spin state to 40 % high-spin. Substitutions at Tyr96, Met98 and Leu253 in CYP101D2 reduced both the spin state shift on camphor binding and the camphor oxidation activity. The Tyr96Ala mutant increased the affinity of CYP101D2 for hydrocarbon substrates including adamantane, cyclooctane, hexane and 2-methylpentane. The monooxygenase activity of the Tyr96Ala variant towards alkane substrates was also enhanced compared with the wild-type enzyme. The crystal structure of the substrate-free form of this variant shows the enzyme in an open conformation (PDB: 4DXY), similar to that observed with the wild-type enzyme (PDB: 3NV5), with the side chain of Ala96 pointing away from the heme. Despite this, the binding and activity data suggest that this residue plays an important role in substrate binding, evidencing that the enzyme probably undergoes catalysis in a more closed conformation, similar to those observed in the crystal structures of CYP101A1 (PDB: 2CPP) and CYP101D1 (PDB: 3LXI).  相似文献   

12.
Because of having many low molecular mass substrates, CYP2E1 is of particular interests to the pharmaceutical industry. Many evidences showed that this enzyme can adopt multiple substrates to significantly reduce the oxidation rate of the substrates. The detailed mechanism for this observation is still unclear. In the current study, we employed GPU‐accelerated molecular dynamics simulations to study the multiple‐binding mode of human CYP2E1, with an aim of offering a mechanistic explanation for the unexplained multiple‐substrate binding. Our results showed that Thr303 and Phe478 were key factors for the substrate recognition and multiple‐substrate binding. The former can form a significant hydrogen bond to recognize and position the substrate in the productive binding orientation in the active site. The latter acted as a mediator for the substrate communications via π–π stacking interactions. In the multiple‐binding mode, the aforementioned π–π stacking interactions formed by the aromatic rings of both substrates and Phe478 drove the first substrate far away from the catalytic center, orienting in an additional binding position and going against the substrate metabolism. All these findings could give atomic insights into the detailed mechanism for the multiple‐substrate binding in human CYP2E1, providing useful information for the drug metabolism mechanism and personalized use of clinical drugs. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

13.
CYP2C9 polymorphisms result in reduced enzyme catalytic activity and greater activation by effector molecules as compared to wild-type protein, with the mechanism(s) for these changes in activity not fully elucidated. Through T1 NMR and spectral binding analyses, mechanism(s) for these differences in behavior of the variant proteins (CYP2C9.2, CYP2C9.3, and CYP2C9.5) as compared to CYP2C9.1 were assessed. Neither altered binding affinity nor substrate (flurbiprofen) proton to heme-iron distances differed substantially among the four enzymes. Co-incubation with dapsone resulted in reduced substrate proton to heme-iron distances for all enzymes, providing at least a partial mechanism for the activation of CYP2C9 variants by dapsone. In summary, neither altered binding affinity nor substrate orientation appear to be major factors in the reduced catalytic activity noted in the CYP2C9 variants, but dapsone co-incubation caused similar changes in substrate proton to heme-iron distances suggesting at least partial common mechanisms in the activation of the CYP2C9 forms.  相似文献   

14.
Mounting evidence thus far indicates that human cytochrome P450 2B6 (CYP2B6), an enzyme expressed at a relatively low level functionally, is primarily responsible for the metabolism of several clinically relevant drugs, including propofol, efavirenz, bupropion, mephobarbital, and the propofol analog 2,6-di-sec-butyl phenol. We used molecular dynamics and molecular docking methods to predict such interactions and to compare with experimentally measured metabolisms. Insight II and Discover Studio 2.5 were used to carry out the docking of these substrates into CYP2B6 to explore the critical residues and interaction energies of the complexes. Phe297, Glu301, Thr302 and Val367 were identified as major drug-binding residues, which is consistent with previous data on site-directed mutagenesis, crystallography structure, and from modeling and docking studies. In addition, our docking results suggest that nonpolar amino acid clusters and heme also participate in binding to mediate drug oxidative metabolism. The binding modes of the five clinically relevant substrates mentioned above for metabolism on CYP2B6 are presented.  相似文献   

15.
Molecular dynamics (MD) simulations were carried out to compare the free and bound structures of wild type U1A protein with several Phe56 mutant U1A proteins that bind the target stem loop 2 (SL2) RNA with a range of affinities. The simulations indicate the free U1A protein is more flexible than the U1A-RNA complex for both wild type and Phe56 mutant systems. A complete analysis of the hydrogen-bonding (HB) and non-bonded (VDW) interactions over the course of the MD simulations suggested that changes in the interactions in the free U1A protein caused by the Phe56Ala and Phe56Leu mutations may stabilize the helical character in loop 3, and contribute to the weak binding of these proteins to SL2 RNA. Compared with wild type, changes in HB and VDW interactions in Phe56 mutants of the free U1A protein are global, and include differences in β-sheet, loop 1 and loop 3 interactions. In the U1A-RNA complex, the Phe56Ala mutation leads to a series of differences in interactions that resonate through the complex, while the Phe56Leu and Phe56Trp mutations cause local differences around the site of mutation. The long-range networks of interactions identified in the simulations suggest that direct interactions and dynamic processes in both the free and bound forms contribute to complex stability.  相似文献   

16.
Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) complete cDNA was cloned from the leaves of Ruta graveolens, a psoralen producing plant. The recombinant enzyme (classified CYP73A32) was expressed in Saccharomyces cerevisiae. Mechanism-based inactivation was investigated using various psoralen derivatives. Only psoralen and 8-methoxypsoralen were found to inactivate C4H. The inactivation was dependent on the presence of NADPH, time of pre-incubation, and inhibitor concentration. Inactivation stoichiometry was 0.9 (+/-0.2) for CYP73A1 and 1.1 (+/-0.2) for CYP73A32. SDS-PAGE analysis demonstrated that [3H]psoralen was irreversibly bound to the C4H apoprotein. K(i) and k(inact) for psoralen and 8-methoxypsoralen inactivation on the two C4H revealed a lower sensitivity for CYP73A32 compared to CYP73A1. Inactivation kinetics were also determined for CYP73A10, a C4H from another furocoumarin-producing plant, Petroselinum crispum. This enzyme was found to behave like CYP73A32, with a weak sensitivity to psoralen and 8-MOP inactivation. Cinnamic acid hydroxylation is a key step in the biosynthesis of phenylpropanoid compounds, psoralen derivatives included. Our results suggest a possible evolution of R. graveolens and P. crispum C4H that might tolerate substantial levels of psoralen derivatives in the cytoplasmic compartment without a depletive effect on C4H and the general phenylpropanoid metabolism.  相似文献   

17.
Vitamin D is a key signalling molecule that plays a vital role in the regulation of calcium phosphate homeostasis and bone remodelling. The circulating biologically active form of vitamin D is regulated by the catabolic mechanism of cytochrome P450 24-hydroxylase (CYP24A1) enzyme. The over-expression of CYP24A1 negatively regulates the vitamin D level, which is the causative agent of chronic kidney disease, osteoporosis and several types of cancers. In this study, we found three potential lead molecules adverse to CYP24A1 through structure-based, atom-based pharmacophore and e-pharmacophore-based screening methods. Analysis was done by bioinformatics methods and tools like binding affinity (binding free energy), chemical reactivity (DFT studies) and molecular dynamics simulation (protein–ligand stability). Combined computational investigation showed that the compounds NCI_95001, NCI_382818 and UNPD_141613 may have inhibitory effects against the CYP24A1 protein.  相似文献   

18.
As co‐chaperones of the 90‐kDa heat shock protein(HSP90), FK506 binding protein 51 (FKBP51) and FK506 binding protein 52 (FKBP52) modulate the maturation of steroid hormone receptor through their specific FK1 domains (FKBP12‐like domain 1). The inhibitors targeting FK1 domains are potential therapies for endocrine‐related physiological disorders. However, the structural conservation of the FK1 domains between FKBP51 and FKBP52 make it difficult to obtain satisfactory selectivity in FK506‐based drug design. Fortunately, a series of iFit ligands synthesized by Hausch et al exhibited excellent selectivity for FKBP51, providing new opportunity for design selective inhibitors. We performed molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis to reveal selective mechanism for the inhibitor iFit4 binding with FKBP51 and FKBP52. The conformational stability evaluation of the “Phe67‐in” and “Phe67‐out” states implies that FKBP51 and FKBP52 have different preferences for “Phe67‐in” and “Phe67‐out” states, which we suggest as the determinant factor for the selectivity for FKBP51. The binding free energy calculations demonstrate that nonpolar interaction is favorable for the inhibitors binding, while the polar interaction and entropy contribution are adverse for the inhibitors binding. According to the results from binding free energy decomposition, the electrostatic difference of residue 85 causes the most significant thermodynamics effects on the binding of iFit4 to FKBP51 and FKBP52. Furthermore, the importance of substructure units on iFit4 were further evaluated by unbinding pathway analysis and residue‐residue contact analysis between iFit4 and the proteins. The results will provide new clues for the design of selective inhibitors for FKBP51.  相似文献   

19.
Fluoxetine (FLX) is one of the most widely prescribed selective serotonin reuptake inhibitors. Although FLX is used as racemate in the clinic, the clinical pharmacokinetics of FLX and its N‐demethylation metabolite norfluoxetine (NFLX) show obvious cytochrome P450 (CYP) polymorphism dependency and exhibit marked stereoselectivity. However, the kinetic profiles of CYP variants to FLX remain unclear. In the present study, some variants of human CYP2C8, CYP2C9, and CYP2D6 were first expressed in insect cells, and their catalytic roles with respect to FLX enantiomers were then investigated. CYP2C8.4 and CYP2C9.10 showed significantly lower activity and CYP2C8.3 showed significantly higher activity toward both R‐ and S‐FLX compared with the wildtype, while CYP2C9.3, CYP2C9.13, and CYP2C9.16 showed significantly lower activity only toward R‐FLX. Five CYP2C9 variants and CYP2D6.1 exhibited significantly stereoselective kinetic profiles prior to R‐FLX, and CYP2C8.3 showed a slight stereoselectivity. Interestingly, obvious substrate inhibition was observed in the CYP2C9 wildtype and its three variants only in the case of R‐FLX. Together, these findings suggest that CYP2C9 and CYP2D6 polymorphism may play an important role in the clearance of FLX and also in the stereoselective kinetic profiles of FLX enantiomers. Chirality 26:166–173, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Cytochrome P450 2A6 (CYP2A6) is the major nicotine C-oxidase in human and participates in the metabolism of drugs and precarcinogens. The CYP2A6 gene is highly polymorphic and more than 22 different alleles have been described. We here focused on the polymorphism in the 3'-UTR region, in particular the common CYP2A6*1B allele, carrying an unequal crossover element from the pseudogene CYP2A7. Analysis of CYP2A6 expression in a human liver bank (n=46) revealed that the protein level and catalytic activity using coumarin as a substrate were all higher, following a linear gene-dose relationship, in livers carrying one or two copies of CYP2A6*1B, as compared to other CYP2A6 allelic variants. Different variants of the CYP2A6 3'-UTR were cloned into a modified pGL3 plasmid downstream of the luciferase reporter gene. The plasmids, having the proximal promoter of CYP2A6 gene, were transfected into HeLa cells or injected into the tail veins of male CD1 mice. In both systems, the 3'-UTR CYP2A6*1B constructs caused higher reporter gene activity and the CYP2A7 3'-UTR construct lower activity, compared to the CYP2A6*1 3'-UTR constructs. Two SNPs differentiating the 3'-UTR between CYP2A7 and CYP2A6*1B were found to be of importance for the expression in both systems. Analysis of reporter enzyme degradation in HeLa cells showed that luciferase-3'-UTR-CYP2A6*1A had a half-life of approximately 4.9h as compared to 6.3h for luciferase-3'-UTR-CYP2A6*1B. In conclusion, we identified polymorphic motifs in the CYP2A6 3'-UTR of importance for CYP2A6 mRNA stabilization and enzyme expression. Such polymorphism has been described to influence the in vivo rate of nicotine elimination and possibly the cigarette consumption and risk of smoking induced lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号