首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A clinically relevant porcine model of a biofilm-infected wound was established in 10 minipigs. The wounds of six experimental animals were infected with a modified polymicrobial Lubbock chronic wound biofilm consisting of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Bacillus subtilis. Four animals served as uninfected controls. The wounds were monitored until they had healed for 24 days. The biofilm persisted in the wounds up to day 14 and significantly affected healing. The control to infected healed wound area ratios were: 45%/21%, 66%/37%, and 90%/57% on days 7, 10 and 14, respectively. The implanted biofilm prolonged inflammation, increased necrosis, delayed granulation and impaired development of the extracellular matrix as seen in histological and gene expression analyses. This model provides a therapeutic one-week window for testing of anti-biofilm treatments and for research on the pathogenesis of wound infections in pig that is clinically the most relevant animal wound healing model.  相似文献   

2.
Chronic diabetic foot ulcers are frequently colonised and infected by polymicrobial biofilms that ultimately prevent healing. This study aimed to create a novel in vitro inter-kingdom wound biofilm model on complex hydrogel-based cellulose substrata to test commonly used topical wound treatments. Inter-kingdom triadic biofilms composed of Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus were shown to be quantitatively greater in this model compared to a simple substratum when assessed by conventional culture, metabolic dye and live dead qPCR. These biofilms were both structurally complex and compositionally dynamic in response to topical therapy, so when treated with either chlorhexidine or povidone iodine, principal component analysis revealed that the 3-D cellulose model was minimally impacted compared to the simple substratum model. This study highlights the importance of biofilm substratum and inclusion of relevant polymicrobial and inter-kingdom components, as these impact penetration and efficacy of topical antiseptics.  相似文献   

3.
Anaerobic oxidation of methane coupled to denitrification (AOM-D) in a membrane biofilm reactor (MBfR), a platform used for efficiently coupling gas delivery and biofilm development, has attracted attention in recent years due to the low cost and high availability of methane. However, experimental studies have shown that the nitrate-removal flux in the CH4-based MBfR (<1.0 g N/m2-day) is about one order of magnitude smaller than that in the H2-based MBfR (1.1–6.7 g N/m2-day). A one-dimensional multispecies biofilm model predicts that the nitrate-removal flux in the CH4-based MBfR is limited to <1.7 g N/m2-day, consistent with the experimental studies reported in the literature. The model also determines the two major limiting factors for the nitrate-removal flux: The methane half-maximum-rate concentration (K2) and the specific maximum methane utilization rate of the AOM-D syntrophic consortium (kmax2), with kmax2 being more important. Model simulations show that increasing kmax2 to >3 g chemical oxygen demand (COD)/g cell-day (from its current 1.8 g COD/g cell-day) and developing a new membrane with doubled methane-delivery capacity (Dm) could bring the nitrate-removal flux to ≥4.0 g N/m2-day, which is close to the nitrate-removal flux for the H2-based MBfR. Further increase of the maximum nitrate-removal flux can be achieved when Dm and kmax2 increase together.  相似文献   

4.
AIMS: To develop a perfusion biofilm system to model tongue biofilm microflora and their physiological response to sulfur-containing substrates (S-substrates) in terms of volatile sulfide compound (VSC) production. METHODS AND RESULTS: Tongue-scrape inocula were used to establish in vitro perfusion biofilms which were examined in terms of ecological composition using culture-dependent and independent (PCR-DGGE) approaches. VSC-specific activity of cells was measured by a cell suspension assay, using a portable industrial sulfide monitor which was also used to monitor VSC production from biofilms in situ. Quasi steady states were achieved by 48 h and continued to 96 h. The mean (+/-SEM) growth rate for 72-h biofilms (n=4) was micro=0.014 h(-1) (+/-0.005 h(-1)). Comparison of biofilms, perfusate and original inoculum showed their ecological composition to be similar (Pearson coefficient>0.64). Perfusate and biofilm cells derived from the same condition (co-sampled) were equivalent with regard to VSC-specific activities which were up-regulated in the presence of S-substrates. CONCLUSIONS: The model maintained a stable tongue microcosm suitable for studying VSC production; biofilm growth in the presence of S-substrates up-regulated VSC activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The method is apt for studying ecological and physiological aspects of oral biofilms and could be useful for screening inhibitory agents.  相似文献   

5.
Aims: To develop an in vitro model (Colony/drip‐flow reactor – C/DFR) for the growth and analysis of methicillin‐resistant Staphylococcus aureus (MRSA) biofilms. Methods and Results: Using the C/DFR model, biofilms were grown on the top of polycarbonate filter membranes inoculated with a clinical isolate of MRSA, placed on absorbent pads in the DFR and harvested after 72 h. The biofilms varied from 256 to 308 μm in thickness with a repeatability standard deviation of 0·22. Testing of antimicrobial agents was also performed where C/DFR biofilms were grown in parallel with conventional colony biofilms. A saline solution (control), 1% silver sulfadiazine solution, and 0·25% Dakin’s solution were used to treat the biofilms for 15 min. Microscopic evaluation of biofilm morphology and thickness was conducted. The Dakins solution in both models produced statistically significantly higher log reductions than silver sulfadiazine treatment. Conclusions: The C/DFR biofilms were thick and repeatable and exhibited higher resistance to Dakins solution than the treated colony biofilms. Significance and Impact of the Study: The C/DFR can be used as a tool for examining complex biofilm physiology as well as for performing comparative experiments that test wound care products and novel antimicrobials.  相似文献   

6.
Aims: The goal of this investigation was to develop an in vitro, polymicrobial, wound biofilm capable of supporting the growth of bacteria with variable oxygen requirements. Methods and Results: The strict anaerobe Clostridium perfringens was isolated by cultivating wound homogenates using the drip‐flow reactor (DFR), and a three‐species biofilm model was established using methicillin‐resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Cl. perfringens in the colony‐drip‐flow reactor model. Plate counts revealed that MRSA, Ps. aeruginosa and Cl. perfringens grew to 7·39 ± 0·45, 10·22 ± 0·22 and 7·13 ± 0·77 log CFU per membrane, respectively. The three‐species model was employed to evaluate the efficacy of two antimicrobial dressings, Curity? AMD and Acticoat?, compared to sterile gauze controls. Microbial growth on Curity? AMD and gauze was not significantly different, for any species, whereas Acticoat? was found to significantly reduce growth for all three species. Conclusions: Using the colony‐DFR, a three‐species biofilm was successfully grown, and the biofilms displayed a unique structure consisting of distinct layers that appeared to be inhabited exclusively or predominantly by a single species. Significance and Impact of the Study: The primary accomplishment of this study was the isolation and growth of an obligate anaerobe in an in vitro model without establishing an artificially anaerobic environment.  相似文献   

7.
Biofilm formation is a dynamic process that leads to mature communities over time. Despite a general knowledge of biofilm community formation and the resultant limitations of antibiotic therapy, there is a paucity of data describing specific plume heights, surface coverage and rates of maturation. Furthermore, little is published on the effect that the broth medium might have on the degree of biofilm maturation. In this study, three strains of methicillin-resistant Staphylococcus aureus (MRSA) (USA300, USA400 and a clinical isolate) were grown in brain heart infusion broth (BHI) or tryptic soy broth (TSB). Following growth, SEM images were captured for 3-D analysis to assess plume height. TSB produced significantly higher plume heights of USA300 and USA400 compared to BHI. Broth type was less influential on the clinical isolate. The data indicate that broth type and time may be important factors to consider when assessing maturation and plume height formation of MRSA biofilms.  相似文献   

8.
Detachment from biofilms was evaluated using a mixed culture biofilm grown on primary wastewater in a tube reactor. The growth of biofilms and the detachment of biomass from biofilms are strongly influenced by hydrodynamic conditions. In a long-term study, three biofilms were cultivated in a biofilm tube reactor. The conducted experiments of biofilm growth and detachment can be divided into three phases: 1) an exponential phase with a rapid increase of the biofilm thickness, 2) a quasi-steady-state with spontaneous fluctuation of the biofilm thickness between 500 and 1,200 microm in the investigated biofilm systems, and 3) a washout experiment with increased shear stress in three to four steps after several weeks of quasi-steady-state. Whereas the biofilm thickness during the homogeneous growth phase can be regarded constant throughout the reactor, it was found to be very heterogeneous during the quasi-steady-state and the washout experiments. Growth and detachment during all three phases was simulated with the same one-dimensional biofilm model. For each of the three phases, a different detachment rate model was used. During the homogeneous growth phase, detachment was modeled proportional to the biofilm growth rate. During the quasi-steady-state phase, detachment was described by random detachment events assuming a base biofilm thickness. Finally, the washout experiment was simulated with detachment being a function of the biofilm thickness before the increase of the shear stress.  相似文献   

9.
Abstract

Conventional completely mixed anaerobic treatment systems limit the chances of the different species of bacteria to spatially group together according to their mutual cooperation and as a result, show a lower efficiency and vulnerability towards shock situations. It is interesting to know about the stratification of the different bacterial species participating in the degradation process and the intermediates that they produce. In this study, we established and optimized a two-phase anaerobic packed bed biofilm reactor system (AnPBR) with porous PVA gel beads used as bio-carriers and ran the reactor system in a steady state to observe the VFAs produced along with the microbial diversity of the predominant species at different stages of the reactor system. We observed that acetate and butyrate were the predominant intermediate VFAs while concentrations of other VFAs such that propionic acid were low. Acetobacterium and Clostridium were found to be the most abundant bacterial species in acidogenic reactor while methanogenic reactor was highly enriched with Methanobacterium and Methanosarcina. Apart from the above, syntrophic populations such as Syntrophobactor wolinii were also observed to be dominant in both the reactors – especially towards the end of acidogenic reactor and the initial part of the methanogenic reactor.  相似文献   

10.
The objective of this study was to develop an optimized assay for Salmonella Typhi biofilm that mimics the environment of the gallbladder as an experimental model for chronic typhoid fever. Multi-factorial assays are difficult to optimize using traditional one-factor-at-a-time optimization methods. Response surface methodology (RSM) was used to optimize six key variables involved in S. Typhi biofilm formation on cholesterol-coated polypropylene 96-well microtiter plates. The results showed that bile (1.22%), glucose (2%), cholesterol (0.05%) and potassium chloride (0.25%) were critical factors affecting the amount of biofilm produced, but agitation (275 rpm) and sodium chloride (0.5%) had antagonistic effects on each other. Under these optimum conditions the maximum OD reading for biofilm formation was 3.4 (λ600 nm), and the coefficients of variation for intra-plate and inter-plate assays were 3% (n?=?20) and 5% (n?=?8), respectively. These results showed that RSM is an effective approach for biofilm assay optimization.  相似文献   

11.

Background

Wound healing is a complex biologic process that involves the integration of inflammation, mitosis, angiogenesis, synthesis, and remodeling of the extracellular matrix. However, some wounds fail to heal properly and become chronic. Although some simulated chronic wound models have been established, an efficient approach to treat chronic wounds in animal models has not been determined. The aim of this study was to develop a modified rat model simulating the chronic wounds caused by clinical radiation ulcers and examine the treatment of chronic wounds with adipose-derived stem cells.

Results

Sprague–Dawley rats were irradiated with an electron beam, and wounds were created. The rats received treatment with adipose-derived stem cells (ASCs), and a wound-healing assay was performed. The wound sizes after ASC treatment for 3 weeks were significantly smaller compared with the control condition (p < 0.01). Histological observations of the wound edge and immunoblot analysis of the re-epithelialization region both indicated that the treatment with ASCs was associated with the development of new blood vessels. Cell-tracking experiments showed that ASCs were colocalized with endothelial cell markers in ulcerated tissues.

Conclusions

We established a modified rat model of radiation-induced wounds and demonstrated that ASCs accelerate wound-healing.  相似文献   

12.
AIMS: To determine whether the stringency of sterilization procedures for biological components of in vivo dental plaque-generating devices based on enamel can be increased to minimize prion risk without compromising natural biofilm composition. METHODS AND RESULTS: The composition of in vitro biofilms, grown on hypochlorite-treated and untreated autoclaved enamel surfaces, was determined using culture-based methods and checkerboard DNA: DNA hybridization analysis. No differences were found between biofilms recovered from either substrate. SIGNIFICANCE: Several in situ models allow generation of plaque in the oral cavity, followed by recovery of intact biofilms for experimentation. Approaches allowing plaque formation on natural tooth surfaces are most valuable, but present a possible infection risk to volunteers wearing plaque-collecting devices, particularly with respect to prions. Hypochlorite treatment of biological material, as an adjunct to autoclaving, reduces infection risk without compromising biofilm composition and should be adopted in all future studies using plaque-generating devices incorporating enamel, where there is a potential prion threat, and further investigated in other biological hard tissues.  相似文献   

13.
Mixed culture of microorganisms immobilized onto Celite diatomaceous earth particles were used to degrade 3,4-dichloroaniline (34DCA) in a three-phase draft tube fluidized bed bioreactor. Biodegradation was confirmed as the dominant removal mechanism by measurements of the concomitant chloride ion evolution. Degradation efficiencies of 95% were obtained at a reactor retention time of 1.25 h. A mathematical model was used to describe the simultaneous diffusion and reaction of 34DCA and oxygen in the biofilms on the particles in the reactor. The parameters describing freely suspended cell growth on 34DCA were obtained in batch experiments. The model was found to describe the system well for three out of four steady states and to predict qualitatively the experimentally observed transition in the biofilm kinetics from 34DCA to oxygen limitation.  相似文献   

14.
In this study it is reported the operation of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor under sulfate-reducing condition which was also exposed to different amounts of ethanol and toluene. The system was inoculated with sludge taken from up-flow anaerobic sludge blanket (UASB) reactors treating refuses from a poultry slaughterhouse. The HAIB reactor comprised of an immobilized biomass on polyurethane foam and ferrous and sodium sulfate solutions were used (91 and 550 mg/L, respectively), to promote a sulfate-reducing environment. Toluene was added at an initial concentration of 2.0 mg/L followed by an increased range of different amendments (5, 7, and 9 mg/L). Ethanol was added at an initial concentration of 170 mg/L followed by an increased range of 960 mg/L. The reactor was operated at 30(+/-2) degrees C with hydraulic detention time of 12 h. Organic matter removal efficiency was close to 90% with a maximum toluene degradation rate of 0.06 mg(toluene)/mg(vss)/d. Sulfate reduction was close to 99.9% for all-nutritional amendments. Biofilm microscopic characterization revealed a diversity of microbial morphologies and DGGE-profiling showed a variation of bacterial and sulfate reducing bacteria (SRB) populations, which were significantly associated with toluene amendments. Diversity of archaea remained unaltered during the different phases of this experiment. Thus, this study demonstrates that compact units of HAIB reactors, under sulfate reducing conditions, are a potential alternative for in situ aromatics bioremediation.  相似文献   

15.
16.
It is well known that sessile bacteria have a strong tendency to exist in a biofilm phenotype, whereby bacterial cells aggregate and produce a gel-like extracellular matrix, which, in an infection scenario, offers a significant barrier to attack by conventional antibiotics and the immune system. In this paper we develop a multi-phase model of a maturing Pseudomonas aeruginosa biofilm, allowing for the production and secretion of exopolysaccharide (EPS). The primary quorum-sensing system of P. aeruginosa (namely the lasR system) is believed to be required for full biofilm development, and we thus take the synthesis of EPS to be regulated by the cognate signal molecule, 3-oxo-C12-HSL. We also take EPS and signal production, along with bacterial growth, to be limited by oxygen availability, thus factoring in the nutrient poor conditions deep inside the biofilm. We use simulations to examine the role played by quorum sensing in the biofilm maturation process, and to investigate the effect of anti-quorum sensing and antibiotic treatments on EPS concentration, signal level, bacterial numbers and biofilm growth rate. In addition, we undertake analysis of the associated travelling-wave behaviour.  相似文献   

17.
This study was undertaken to compare the immunogenicity and protective potential of biofilm vs planktonic Staphylococcus aureus vaccine for the prevention of mastitis using the mouse as a model system. Mice immunized with formalin-killed whole cell vaccine of S. aureus residing in a biofilm when delivered via an intramammary route produced a cell mediated immune response. Mice immunized with this biofilm vaccine showed significant reductions in colonization by S. aureus in mammary glands, severity of clinical symptoms and tissue damage in mammary glands in comparison with the mice immunized with formalin-killed whole cells of planktonic S. aureus. The planktonic vaccine administered by a subcutaneous route produced a significantly higher humoral immune response (IgG1 and IgG) than the biofilm vaccine. However, considering the host response, tissue damage, the clinical severity and colonization of S. aureus in mammary glands, the biofilm vaccine performed better in immunogenicity and protective potential when administered by the intramammary route.  相似文献   

18.
Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rRNA gene clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, an annular reactor was used to generate model drinking water biofilms grown on polycarbonate slides. High-quality RNA was extracted from 2-month-old biofilms and used to generate 16S rRNA-based clones. Sequencing analyses of 16S rRNA-based clones suggested that the active bacterial fraction consisted of a few dominant bacterial groups related to Nevskia ramosa and to uncultured bacteria. Several of these bacterial groups were closely related to clones characterized in a DNA-based clone library also generated in this study. Altogether, these results suggest that some of the predominant drinking water bacteria identified using DNA-based techniques are indeed active.  相似文献   

19.
Aims: To investigate the ability of a mixture of phage K and six of its modified derivatives to prevent biofilm formation by Staphylococcus aureus and also to reduce the established biofilm density. Methods and Results: The bioluminescence‐producing Staph. aureus Xen29 strain was used in the study, and incubation of this strain in static microtitre plates at 37°C for 48 h confirmed its strong biofilm‐forming capacity. Subsequently, removal of established biofilms of Staph. aureus Xen29 with the high‐titre phage combination was investigated over time periods of 24 h, 48 h and 72 h. Results suggested that these biofilms were eliminated in a time‐dependant manner, with biofilm biomass reduction significantly greater after 72 h than after 24–48 h. In addition, initial challenge of Staph. aureus Xen29 with the phage cocktail resulted in the complete inhibition of biofilm formation over a 48‐h period with no appearance of phage resistance. Conclusions: In general, our findings demonstrate the potential use of a modified phage combination for the prevention and successful treatment of Staph. aureus biofilms, which are implicated in several antibiotic‐resistant infections. Significance and Impact of the Study: This study highlights the first use of phage K for the successful removal and prevention of biofilms of Staph. aureus.  相似文献   

20.
目的 构建一个简单、经济的新的甲真菌病体外模型.方法 制备猪甲板,在其腹侧面中央黏贴一个“O”型圈,将受试菌液加入“O”型圈内,将甲板放置培养皿中培养,用大体观察及组织病理的方法动态观察不同真菌侵袭甲板的情况.结果 用猪甲板制备甲真菌病体外模型,通过该模型观察了红色毛癣菌、须癣毛癣菌以及白念珠菌穿透甲板的能力.通过组织病理学方法观察到了真菌动态穿透甲板的过程.结论 该模型适用于评估真菌对甲板的致病作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号